

Electronics and Computer Science

Faculty of Physical Sciences and Engineering

University of Southampton

UKESF in collaboration with University of Southampton

Authors:

Eamonn Chislett-Trim

Gavin Fish

Leonardo Moreira

Foivos Gaitantzis

Adel Hedayat

Group Design Project 18:

UKESF: Electronics Everywhere

Companion Application

Project supervisor: Professor Geoff Merrett

Project client: Stewart Edmondson, UKESF

Second examiner: Dr Mark Weal

A Group Design Project Report submitted for the Award of:

(MEng) Electrical and Electronic Engineering and

(MEng) Computer Science

Date: 15/01/2021

Words: 24696

 i

Abstract (Adel)

Electronics Everywhere Application is a project that aims to work alongside the

UKESF/University of Southampton's outreach electronics kits to produce a cross-platform

(iOS and Android) application that contains the tools for students to be able to interact

with the Music Mixer board without highly technical laboratory equipment.

The Model View Controller architecture was adopted for use with Flutter to develop the

application. The application has a practical page that has the oscilloscope and signal

generator functionality. Lab instructions, interactive image and about pages were

implemented for each board.

Feedback from A-level teachers states 93% agree or strongly agree that students would be

capable of using the application. The application was tested to have an average margin of

error below 1%. The application has implemented all the core specification and is ready

to be used.

The client of the project has stated that the project was "innovative", "well planned" and

"very organised" and "the group understood both the context and the design brief". The

final thoughts, from the client, on the project were that it is "worthy of use" and "met all

major goals".

 iii

Table of Contents
ABSTRACT (ADEL) ... I

TABLE OF CONTENTS ... III

ACKNOWLEDGEMENTS .. VII

STATEMENT OF ORIGINALITY .. IX

TABLE OF FIGURES .. XI

ABBREVIATIONS AND DEFINITIONS ... XV

1 INTRODUCTION (FOIVOS) ... 1

2 BACKGROUND RESEARCH ... 3

2.1 KITS (GAVIN) ... 3
2.1.1 Music Mixer (Gavin) .. 3
2.1.2 Logic and Arithmetic (Gavin) ... 5

2.2 LINEAR PULSE CODE MODULATION (LPCM) (FOIVOS) ... 6
2.2.1 Sampling Rate and Resolution (Foivos) ... 7
2.2.2 PCM Conversion Process (Foivos) .. 7
2.2.3 Mobile Devices (Foivos) ... 7

2.3 TOOLS (ADEL) .. 8
2.3.1 Native Application Development (Adel) ... 8
2.3.2 Cross-Platform Development (Adel) .. 8

2.4 OTHER APPLICATIONS (LEONARDO) .. 9
2.4.1 Dual-Channel Function Generator (Leonardo) ... 9
2.4.2 AUDio MEasurement System (Leonardo) .. 9

2.5 STANDARDS OF DESIGN (EAMONN) .. 10
2.5.1 Model View Controller (Eamonn) .. 10
2.5.2 Version Control System (Eamonn) ... 12

3 SPECIFICATION (EAMONN) .. 13

3.1.1 Core Specification (Eamonn) ... 13
3.1.2 Stretch Goals (Eamonn) ... 13

4 DESIGN AND IMPLEMENTATION .. 15

4.1 INITIAL DESIGN (EAMONN) .. 15
4.1.1 Model View Controller (Eamonn) .. 15

4.2 HARDWARE IMPLEMENTATION (EAMONN) ... 17
4.2.1 Signal Generator (Eamonn) ... 17
4.2.2 Oscilloscope (Foivos) ... 19

4.3 HOME SCREEN (LEONARDO) .. 21
4.3.1 Page Components (Leonardo) .. 21
4.3.2 Initial Design and Implementation (Leonardo) .. 21
4.3.3 Design Changes and Considerations (Leonardo) .. 21
4.3.4 Final Design and Implementation (Leonardo) ... 22

4.4 ABOUT PAGE (LEONARDO) .. 25
4.4.1 Page Components (Leonardo) .. 25
4.4.2 Design Decisions (Leonardo) ... 25
4.4.3 Implementation (Leonardo) .. 25
4.4.4 Music Mixer Screen (Leonardo) ... 26
4.4.5 Logic and Arithmetic Screen (Leonardo) ... 26

4.5 INTERACTIVE IMAGE PAGE (ADEL) .. 27
4.5.1 Page Content (Adel) ... 27
4.5.2 Design Changes (Adel) ... 28
4.5.3 Final Design and Implementation (Adel) ... 28

iv Table of Contents

4.6 EXERCISES PAGES (LEONARDO) .. 32
4.6.1 Page Components (Leonardo) ... 32
4.6.2 Initial Design and Implementation (Leonardo) ... 32
4.6.3 Design Changes and Considerations (Leonardo) .. 32
4.6.4 Final Design and Implementation (Leonardo) .. 33
4.6.5 Logic and Arithmetic Screen (Leonardo) ... 38

4.7 SETTINGS PAGE (LEONARDO) .. 40
4.7.1 Page Components and Design Considerations (Leonardo) 40
4.7.2 Final Design and Implementation (Leonardo) .. 40

4.8 PRACTICAL PAGE (GAVIN) .. 40
4.8.1 Design Considerations (Gavin) ... 40
4.8.2 Page Layout and Overview Design (Gavin) .. 41
4.8.3 Sidebar and Parameter Menu (Gavin) ... 42
4.8.4 Graphing (Gavin) .. 46
4.8.5 Save/Load Slots (Foivos) ... 50

4.9 APPLICATION NAVIGATION (LEONARDO) .. 52
4.10 INTEGRATION (EAMONN) ... 53

5 TESTING (EAMONN).. 55

5.1 METHODOLOGY (EAMONN) ... 55
5.2 ANDROID RESULTS (EAMONN) .. 56

5.2.1 Samsung S8 Using an Auxiliary Cable (Eamonn) ... 56
5.2.2 OnePlus One Using an Auxiliary Cable (Eamonn) ... 57
5.2.3 Samsung S8 Using Other Connections (Eamonn) ... 58

5.3 IOS RESULTS (EAMONN) ... 58
5.4 OTHER NOTABLE RESULTS (EAMONN) .. 60

5.4.1 Signal Generation (Eamonn) ... 60
5.4.2 Microphone Detection and Processing (Eamonn) ... 62
5.4.3 Oscilloscope (Eamonn) .. 62

5.5 A-LEVEL TEACHERS FEEDBACK (EAMONN) .. 63
5.5.1 First Survey (Eamonn) ... 63
5.5.2 Second Survey (Eamonn) ... 63
5.5.3 Third Survey (Eamonn) .. 64

6 FINAL OUTPUTS (GAVIN) .. 69

6.1 APPLICATION (EAMONN) ... 69
6.2 HANDOVER RESOURCES (GAVIN) .. 69

6.2.1 Handover Document (Gavin) ... 69
6.2.2 Instructional Video (Gavin) ... 69
6.2.3 Written Instructions (Gavin) .. 69
6.2.4 Music Mixer Laboratory Experiment Instructions (Gavin) 69
6.2.5 Stock Images (Gavin) ... 70

6.3 SURVEYS (EAMONN) ... 70
6.4 TESTING DOCUMENTS (EAMONN).. 70

7 PROJECT MANAGEMENT (EAMONN) .. 71

7.1 DIVISION OF RESPONSIBILITIES AND PROJECT PLANNING (EAMONN) .. 71
7.1.1 Initial Plan (Eamonn) .. 71
7.1.2 Initial Division of Roles (Eamonn) .. 73
7.1.3 Actual Execution (Eamonn) ... 73
7.1.4 Actual Division of Roles (Eamonn) .. 75

7.2 ETHICAL APPROVAL AND PLANNING OF QUESTIONNAIRES (EAMONN) 77
7.2.1 Initial Rationale and Planning (Eamonn) .. 77
7.2.2 Evaluation of Usefulness (Eamonn) ... 77

7.3 PLANNING AND TOOLS (EAMONN) .. 78
7.3.1 Version Control System (Eamonn) ... 78

7.4 RISK MANAGEMENT (EAMONN) .. 79

v Table of Contents

7.4.1 Initial Risk Assessment (Eamonn) .. 79
7.4.2 Actual Risks Mitigated (Eamonn) ... 79

7.5 STRENGTHS AND WEAKNESSES MATRIX (EAMONN) .. 81
7.5.1 Initial Strengths and Weaknesses (Eamonn) .. 81
7.5.2 Strengths and Weaknesses After Project (Eamonn) ... 81

7.6 ACHIEVEMENTS AND RESULTS (EAMONN) ... 82

8 CONCLUSION ... 85

8.1 SPECIFICATION (EAMONN) ... 85
8.2 CONCLUDING DISCUSSION (FOIVOS) .. 86

9 FURTHER WORK (GAVIN) ... 89

9.1 PRACTICAL PAGE TUTORIAL (GAVIN) ... 89
9.2 LINKS FROM THE EXPERIMENT INSTRUCTIONS TO THE PRACTICAL PAGE (GAVIN) 90
9.3 INTERACTIVE 3D CAD MODEL (GAVIN) .. 91
9.4 CROSS-PLATFORM SUPPORT FOR WEB BROWSERS (GAVIN) .. 91
9.5 LOGIC AND ARITHMETIC HARDWARE SUPPORT (GAVIN) ... 91
9.6 SLIDE OUT GESTURE FOR SETTINGS BAR (GAVIN) ... 92
9.7 PINCH TO ZOOM FOR THE PRACTICAL PAGE (GAVIN).. 93
9.8 TRIGGERING BASED ON MOVABLE TRIGGER POINT (GAVIN) ... 93
9.9 SUPPORT FOR MICROPHONE INPUTS TO PHONE DIRECTLY FROM THE MUSIC MIXER BOARD

(GAVIN) ... 94

10 REFERENCES ... 97

11 APPENDIX ... 99

A ORIGINAL PROJECT BRIEF ... 100
B SPECIFICATION .. 101
C GITHUB BRANCH HISTORY ... 104
D RISK ASSESSMENT .. 106
E CLIENT FEEDBACK .. 108

E.i. Client Response ... 108
E.ii. Initial E-mail .. 109

F EDITED LABORATORY NOTES .. 110
G STOCK PHOTO HIGHLIGHTS ... 116
H APPLICATION INSTRUCTIONS .. 118
I HANDOVER DOCUMENT .. 127

I.i. Introduction and Purpose of Document .. 127
I.ii. List of Features ... 128
I.iii. Known Bugs .. 131
I.iv. Software Information and Suggested Work .. 133
I.v. Hardware Information and Suggested Work ... 149
I.vi. Suggested Changes for Supporting Content ... 154
I.vii. Additional Information ... 155
I.viii. Project Structure .. 157

 vii

Acknowledgements

Thanks to the anonymous A-level physics teachers who gave their time to the surveys

throughout the project.

Thanks to Dr Daniel Spencer, Dr Alex Weddell, and Dr Mark Weal for their feedback and

continued support throughout the project.

Thanks to Professor Geoff Merrett from the University of Southampton and Stewart

Edmondson from the UKESF, whom without their support, this project would not have

been as successful.

 ix

Statement of Originality

We have read and understood the ECS Academic Integrity information and the

University's Academic Integrity Guidance for Students.

We are aware that failure to act following the Regulations Governing Academic Integrity

may lead to the imposition of penalties which, for the most severe cases, may include

termination of the program.

We consent to the University copying and distributing any or all of our work in any form

and using third parties (who may be based outside the EU/EEA) to verify whether our

work contains plagiarised material and quality assurance purposes.

We have acknowledged all sources and identified any content taken from elsewhere.

The use of survey responses from A-level Teachers was approved through the University

of Southampton's ERGO board, and the scope is limited to use within the context of this

project.

We have used the following open-source, free-to-use libraries for our implementation of

the project:

- Shared Preferences for Flutter from GitHub [1]

- URL Launcher for Flutter from GitHub [2]

- Permission Handler for Flutter from GitHub [3]

- Flutter Launcher Icons for Flutter from GitHub [4]

We have adapted the library Mic Stream for Flutter from GitHub [5] to work with iOS

and Android on this project.

We did all the work ourselves and have not helped anyone else.

The material in the report is genuine, and we have included all our data and code.

We have not submitted any part of this work for another assessment.

Our work did not involve human participants, their cells or data, or animals.

http://ecs.gg/ai
https://www.southampton.ac.uk/quality/assessment/academic_integrity.page
http://www.calendar.soton.ac.uk/sectionIV/academic-integrity-regs.html

 xi

Table of Figures
Figure 1: Music Mixer kit (sourced from [10]) .. 3

Figure 2: Wave interference section of the Music Mixer board (sourced from [10]) 4

Figure 3: Capacitor discharge section of the Music Mixer board (sourced from [10]) 4

Figure 4: Plank's constant section of the Music Mixer board (sourced from [10]) .. 5

Figure 5: Logic and Arithmetic kit (sourced from [11]) .. 5

Figure 6: Logic section of the Logic and Arithmetic board (edited from [12]) ... 6

Figure 7: Arithmetic section of the Logic and Arithmetic board (edited from [12]) 6

Figure 8: Snippet of the Dual Channel Function Generator application (sourced from [21]) 9

Figure 9: AUDio MEasurement System in the oscilloscope tab (sourced from [22]) 10

Figure 10: MVC flow diagram (recreated from [23]) .. 10

Figure 11: The MVC extended to include a hardware interface .. 11

Figure 12: The original application layout designed on Figma at the start of the project 16

Figure 13: The Android implementation of the signal generator to fill the buffers 18

Figure 14: The iOS implementation of the signal generator to fill the buffers .. 19

Figure 15: Configuration of the mic_stream library for Android oscilloscope implementation 20

Figure 16: The original designs for the home screen showing (Left) the about page (Middle) the home page

(Right) settings page .. 21

Figure 17: Final design of the home screen ... 22

Figure 18: AppBar widget showing the separate parts .. 23

Figure 19: Container widgets found on the home screen for the kits ... 23

Figure 20: Examples of the styling from the UKESF website (sourced [27]) ... 24

Figure 21: PCB trace widget taken from (Left) the UKESF website [27] (Right) the application 24

Figure 22: About page for (Left) the Music Mixer (Right) the Logic and Arithmetic 25

Figure 23: Button widget from (Left) the UKESF website [27] (Right) the application 26

Figure 24: Information widget from (Left) the UKESF website [27] (Right) the application 26

Figure 25: Initial design of the interactive pages for (Left) the Music Mixer (Middle) the Logic and

Arithmetic (Right) the additional information .. 27

Figure 26: Final design of the tooltip for the interactive image page .. 29

Figure 27: Tooltip animation showing the passage of time from left-to-right ... 30

Figure 28: RotatingImage widget for NAND Gate additional information page (cycle goes top-left, top-

right, bottom-left, bottom-right) .. 31

Figure 29: Initial Design for the exercise page .. 32

Figure 30: Final design for the exercise pages ... 33

Figure 31: The exercises containers (Left) static (Right) in a transition .. 34

Figure 32: Code for updating the padding for each of the lab containers .. 34

Figure 33: Training handbook download after pressing the button on the Music Mixer lab page 35

Figure 34: The four introduction pages for each section of the Music Mixer lab .. 36

xii Table of Figures

Figure 35: The four step-by-step pages for each section of the Music Mixer lab 37

Figure 36: Exercises page for the Logic and Arithmetic screen .. 38

Figure 37: An example of the problem exercises for Logic and Arithmetic (Problem 2) 39

Figure 38: Image popup on the problem exercises for the Logic and Arithmetic 39

Figure 39: Final design of the settings page (Left) with dark mode enabled (Right) without dark mode

enabled .. 40

Figure 40: practical page with annotations of the three main sections .. 41

Figure 41: Parameter menu and sidebar on the practical page (Left) expanded (Right) collapsed 42

Figure 42: Signal generator parameter menu showing (Left) top section; bottom section with (Middle-Left)

left selected (Middle-Right) both selected (Right) right selected .. 43

Figure 43: Outputting box with (Left) both signals turned on (Middle) left signal turned on (Right) none

turned on ... 43

Figure 44: Wave parameter selection tabs while the “Left” channel is selected ... 44

Figure 45: The user interface for editing (Top Left) Wave Type (Top Right) Frequency (Bottom Left)

Amplitude (Bottom Right) Phase .. 44

Figure 46: Text editing of the frequency for the left channel .. 44

Figure 47: Attempting to input an out-of-range value into the frequency text entry 45

Figure 48: Oscilloscope parameter menu .. 45

Figure 49: Combined parameter menu (symbols representing a vertical continuation between sections) .. 46

Figure 50: Signal generator mode showing (Top) two graphs (Bottom) one graph 47

Figure 51: Combined mode showing (Top) three graphs (Middle) two graphs (Bottom) one graph 47

Figure 52: Text parameters displayed at the top left of the graph for (Left) a single signal on (Middle) a

single signal off (Right) multiple signals (one on, one off) ... 48

Figure 53: Code for finding the scale between two frequencies of signal generation 49

Figure 54: A 20 Hz sine wave is shown on the combined screen using (Left) a total time of 12 s (Right) a

total time of 0.12 ms .. 49

Figure 55: A demonstration of the triggering working for a signal generated wave 50

Figure 56: Save/load parameters popup with middle slot free .. 50

Figure 57: Confirmation dialogue for saving to a slot ... 51

Figure 58: Confirmation dialogue for deleting a slot .. 51

Figure 59: Information popup for the save/load slots.. 51

Figure 60: Go home popup for kit pages ... 52

Figure 61: Exit button on the practical page ... 52

Figure 62: Testing configuration using a Samsung S8 .. 55

Figure 63: Graph showing the target frequency compared to the recorded frequency using the auxiliary cable

on a Samsung S8 ... 56

Figure 64: Graph showing the target phase compared to the recorded phase using the auxiliary cable on a

Samsung S8 ... 56

Figure 65: Graphing showing recorded amplitudes for different phone and slider volumes on a Samsung S8

... 57

xiii Table of Figures

Figure 66: Graphing showing recorded amplitudes for different phone and slider volumes on a OnePlus One

 ... 57

Figure 67: Graph showing the target frequency compared to the recorded frequency for using the lightning

to auxiliary cable on an iPhone XS .. 58

Figure 68: Graph showing the target phase compared to the recorded phase using the lightning to auxiliary

cable on an iPhone XS ... 59

Figure 69: Graph showing recorded amplitudes for different phone and slider options on an iPhone XS .. 59

Figure 70: Triangle wave being generated by a OnePlus One(Top) correctly at 2500 Hz (Bottom) incorrectly

at 250 Hz .. 60

Figure 71: Triangle wave being generated by a Samsung S8 (Top) correctly at 2500 Hz (Bottom) incorrectly

at 5000 Hz .. 61

Figure 72: Constructive wave of 1260 Hz sine wave with a 440 Hz sine wave (Top) on the application

(Bottom) on the laboratory oscilloscope .. 62

Figure 73: Constructive wave of 440 Hz sine wave with a 3430 Hz square wave with a 180° phase offset

(Top) on the application (Bottom) on the laboratory oscilloscope .. 63

Figure 74: First survey responses .. 65

Figure 75: Second survey results ... 66

Figure 76: Third survey results .. 67

Figure 77: Initial Gantt chart with the sprints labelled .. 72

Figure 78: Actual Gantt chart execution .. 74

Figure 79: Overview of the GitHub branch history for the project, taken with GMaster [32] 78

Figure 80: Example of how the risk assessment was created, using lockdown due to Covid-19 as an example

 ... 79

Figure 81: Initial strengths and weakness matrix ... 81

Figure 82: Final strengths and weaknesses matrix ... 82

Figure 83: Mock-up design of practical page tutorial .. 89

Figure 84: Mock-up diagram of the transitions to and from the instructions and practical page 90

Figure 85: Placeholder button to launch to the practical page from the instructions 91

Figure 86: Practical page parameter menu, showing the collapse button (Left) expanded (Right) collapsed

 ... 92

Figure 87: Use case of the board redesign with TRRS connection to three phones with splitters 94

Figure 88: Use case of the board redesign with TRRS connection to a single phone that is used as both

oscilloscope and signal generator .. 95

 xv

Abbreviations and Definitions

V.I Abbreviations

UKESF United Kingdom Electronics Skills Foundation

GUI

Graphical User Interface

PCB

Printed Circuit Board

LED

Light Emitting Diode

LDR

Light Dependent Resistor

TRS

Tip Ring Sleeve, referring to the auxiliary 3-pole

connection

TRRS

Tip Ring Ring Sleeve, referring to the auxiliary 4-

pole connection

Op-amp

A shorthand for “operational amplifier”

MVC

Model View Controller

PCM

Pulse Code Modulation

SDK

Software Development Kit

V.II Definitions

Backend
Referring to the coding implementation that

corresponds to functionality, and not GUI elements

Kits

Referring to the Electronic Engineering Kits that

have been worked on by the University of

Southampton’s ECS department

Board

Referring to the complete PCB board part of the

specific Electronic Engineering Kit

Widget

Referring to a Flutter widget, which is a piece of

code that relates a singular GUI object

practical page

Referring to the Electronics Everywhere

Application page to interface with the Music Mixer

board

 1

1 Introduction (Foivos)

 “In the UK, the Electronics sector is big, valuable and growing; however, the demand for

capable employable graduates is currently outstripping supply” [6].

 United Kingdom Electronics Skills Foundation

As of spring 2018, the UK had the 6th largest Electronics industry globally with a £98

billion annual turnover contributing to 6% of its GDP and providing over 1,000,000

related jobs [7]. The UK Electronics Skills Foundation (UKESF) is an educational charity

focusing on ensuring that high-school children are aware of electronics and its

opportunities. It operates alongside leading universities, and major corporations, working

closely on practical initiatives that tackle the skills shortage.

Electronics Everywhere is a subset of the UKESF (in collaboration with the University of

Southampton) that makes electronics more engaging by producing specifically designed

circuit boards to teach core electronics concepts to A-level students undertaking computer

science and physics [8] (these are discussed further in 2.1). The UKESF distribute these

boards to hundreds of schools (thousands of users) around the country (as stated in

appendix A). Since most A-level physics students are kinaesthetic learners, the kits have

been vital in showing young people how engaging electronics can be. Unfortunately,

specific electronic lab equipment may be inaccessible or limited such as a signal generator

and an oscilloscope that are mandatory for the students to interface with the kits.

This project aims to design, implement, and test a cross-platform application that provides

the functionality of a signal generator and an oscilloscope on both iOS and Android. This

application is targeted at being used alongside the kits already distributed. The client,

Stewart Edmondson, who is the CEO of the UKESF, explicitly asked for a polished

application with fewer bugs than one with more features. Another critical requirement

included having strong branding throughout the application. Other applications previously

recommended by the UKESF have not been created for A-level students’ use due to their

complexity in design. This project looks to simplify the design to be tailored to A-level

physics students and provide a full experience working with the physical kits provided.

The societal goal is to positively impact A-level physics students' engagement, potentially

inspiring more students to take up electronics at university. Cost of equipment for A-level

physics classes will no longer be an issue, as the application will be provided for free with

the UKESF Electronics Everywhere kits.

 3

2 Background Research

2.1 Kits (Gavin)

The UKESF and academics at the University of Southampton’s ECS department have

collaborated to design, produce and distribute some educational “Electronic Engineering

Kits” [9]. These kits are aimed at introducing A-level students to electronic circuits and

concepts. The two main kits explored in this project are the Music Mixer, and the Logic

and Arithmetic kit.

2.1.1 Music Mixer (Gavin)

The Music Mixer board demonstrates three electronics concepts on a single board: wave

interference, capacitor-discharge, and Plank’s constant [10]. Figure 1 shows that the

Music Mixer kit contains the Music Mixer board, two TRS auxiliary cables, an

“aeroplane” auxiliary splitter, two LDRs and ten pin jumpers.

Figure 1: Music Mixer kit (sourced from [10])

2.1.1.1 Existing Resources (Gavin)

There are supporting resources for the Music Mixer kit available online [10]. A student-

friendly user guide is included in the Music Mixer kit, which gives an overview of the

three sections of the board. A similar guide aimed at teachers contains more information

about the circuitry of the board and how it might be used that can be found online.

A training handbook contains instructions for multiple laboratory experiments with the

Music Mixer board. The training handbook references applications that can be used

alongside the board if access to laboratory oscilloscopes or signal generators is limited.

Section 2.2 “Potential Dividers (AC)” of the training handbook, in particular, could benefit

from the application developed in this project.

Some short informational videos run through experiments, electronic circuits and concepts

found on the Music Mixer board. An in-depth online training video walks through how to

use some third-party computer software to interface with the Music Mixer kit. This

training video could also benefit from the application developed in this project.

4 2 Background Research

2.1.1.2 Music Mixer Section (Gavin)

The Music Mixer section is the main section of the board and is shown in Figure 2. This

section demonstrates the concepts of potential dividers and summation of signals via an

op-amp. This is the part of the board that the application will be targeting primarily.

Figure 2: Wave interference section of the Music Mixer board (sourced from [10])

The input and output ports wiring are fundamental to planning the interface between this

board and devices running the Electronics Everywhere Application. There are two mono

auxiliary inputs to the board and a mono output.

2.1.1.3 Capacitor-Discharge Section (Gavin)

The capacitor-discharge section demonstrates the charging and discharging of capacitors

by including two capacitors, four different sized resistors, and jumpers to reconfigure the

circuit quickly. Either both of the capacitors can be connected, (in parallel or series) or

only one connected. The resistors are set up in parallel and can either be connected or

disconnected with a jumper. The switch S2 is used to charge or discharge the capacitors

through the resistor configuration.

Figure 3: Capacitor discharge section of the Music Mixer board (sourced from [10])

2.1.1.4 Plank’s Constant Section (Gavin)

This section of the board can be used to estimate Plank’s constant by measuring the

voltage and current characteristics of a range of different coloured LEDs [10]. The

equipment used to run experiments with this section is a voltmeter and ammeter. These

features are outside of the scope of this project.

5 2 Background Research

Figure 4: Plank's constant section of the Music Mixer board (sourced from [10])

2.1.2 Logic and Arithmetic (Gavin)

The Logic and Arithmetic board demonstrates electronic concepts such as combinatorial

logic gates and binary number operations aimed at A-level computer science students [11].

Unlike the Music Mixer, this standalone board that does not require external equipment.

The board has two sections: the combinatorial logic section, and the arithmetic section.

An image of the board is shown in Figure 5.

Figure 5: Logic and Arithmetic kit (sourced from [11])

2.1.2.1 Existing Resources (Gavin)

There are supporting resources for the Logic and Arithmetic board available online [11].

A student-friendly user guide is included in the box that gives an overview of the two

sections of the board. A similar guide aimed at teachers contains more information about

the circuitry of the board and how it might be used. Some short informational videos run

through some logical problems that can be run on the board. A training handbook contains

instructions for multiple laboratory experiments that can be run on the two sections of the

Logic and Arithmetic board. There is also a logic problem document that contains ten

exercises that can run using the logic part of the board. There is a training video that walks

through the experiments in the training handbook.

6 2 Background Research

2.1.2.2 Logic Section (Gavin)

The logic section contains various combinatorial gates, input logic level switches, static

logic levels and output LEDs to teach boolean operations and combinatorial logic. The

logic section of the board is shown in Figure 6.

Figure 6: Logic section of the Logic and Arithmetic board (edited from [12])

Users can create combinatorial circuits using jumper cables to join from the input logic

levels to numerous logic gates and then to the outputs. Many configurations of circuits

can be realised, which gives flexibility for different exercises to be run. There are LEDs

at every stage of this circuit, which makes visualising the logic levels simple.

2.1.2.3 Arithmetic Section (Gavin)

The arithmetic section comprises of eight full-adders, a switch to configure the full-adders

into an adder or subtractor, and jumpers that can be used to control the inputs. This section

can be used to aid in teaching binary number systems. The arithmetic section of the board

is shown in Figure 7.

Figure 7: Arithmetic section of the Logic and Arithmetic board (edited from [12])

Users can add or subtract up to 8-bit binary numbers by configuring jumpers to configure

the numbers input and toggling the adder/subtractor switch. There are LEDs at every input

and output of the full-adders, which makes visualising the numbers simple.

2.2 Linear Pulse Code Modulation (LPCM) (Foivos)

Pulse Code Modulation (PCM) is used to convert a continuous analogue signal into a

discrete-time digital signal. Each waveform sample is stored as a discrete integer value

(up to a specific bit length) with no compression.

7 2 Background Research

2.2.1 Sampling Rate and Resolution (Foivos)

There is a trade-off between signal quality and storage space required according to two

key parameters: the sample rate and the resolution. The sample rate is the number of

samples recorded per second, in Hz. The resolution is the number of bits of information

in each sample. On most mobile devices, audio input is sampled at 44.1kHz with points

that are 16-bits in size (resolution) [13].

2.2.2 PCM Conversion Process (Foivos)

The conversion process follows three key steps: sampling, quantisation and encoding. The

signal is first sampled by measuring the amplitude at discrete time intervals. According to

the Nyquist theorem, a signal can be regenerated without losing any information if it is

sampled at a rate that is twice the highest frequency of the input signal [14].

In quantisation, the analogue samples range is divided into different levels (depending on

the resolution) with the analogue samples approximated to their nearest quantisation

values. Due to this approximation, the regenerated signal will always slightly differ to the

original, often referred to as the quantisation error [15].

Finally, encoding ensures that the bandwidth is minimised by designating each quantised

level to a binary code.

2.2.3 Mobile Devices (Foivos)

Android and iOS devices support Linear Pulse Code Modulation (LPCM), a PCM where

quantisation levels are linearly uniform and incremental. The value at each sample is

determined using equation 1 below, for a sine wave of given amplitude 𝐴 and sample with

index 𝑁.

 𝐹(𝑁) = 𝐴 sin(𝛩(𝑁)) 1

The value of Θ is determined using equation 2 below where 𝐹 is the wave frequency, 𝑅 is

the sample rate, and 𝑁 indicates the index of the sample.

 𝛩(𝑁) = 2𝜋
𝐹𝑅

𝑁
 2

These raw audio samples are placed into output buffers. The inverse operation to sound

generation.

2.2.3.1 Android (Eamonn)

Several Android libraries handle the input and output for audio. These different libraries

contain different levels of abstraction for the coder. The library that allows for LPCM

output to be used is called AudioTrack [16]. Using this library, an output buffer can be

filled with a set length of values for LPCM. This allows custom sounds to be synthesised

for audio output. AudioRecord is used for LPCM audio input, allowing the display of the

buffer as 16-bit values [17].

2.2.3.2 iOS (Foivos)

On iOS, the AudioUnit component is the lowest level library for audio generation and

processing. Additionally, it provides seven functions to handle mixing, format conversion,

effects and input/output. For this project, only the remote input/output unit was used to

obtain “low-latency access to individual incoming and outgoing audio sample values”

[18].

8 2 Background Research

2.3 Tools (Adel)

In the UK, the mobile phone operating system market is dominated by iOS and Android,

accounting for 99.5% of mobile phone operating systems market share [19]. There is a

need to develop a cross-platform application for both iOS and Android to reach these

users. There are two ways to build a cross-platform application, developing native iOS

and Android apps separately or using a cross-platform development tool.

2.3.1 Native Application Development (Adel)

In terms of the application, native development refers to developing an application for a

single specific platform. This is achieved using native Software Development Kits (SDK)

of the platform. These SDKs are written in particular languages: Objective-C or Swift for

iOS, and Kotlin or Java for Android.

There are a few benefits to working natively such as direct access to the low-level libraries

to work on the platform, better native performance, and more straightforward material

design for the user interface. However, there are also downsides to native development,

such as requiring each platform to have different teams and expertise. Additionally, each

platform has different implementations that may not align due to the different teams

working independently.

2.3.2 Cross-Platform Development (Adel)

Cross-platform development provides an alternative which aims to tackle the issues with

developing separate native codes. A cross-platform development tool allows creating an

application that can be deployed on multiple platforms from a single code base. This

removes the need to split resources between various teams, leading to reduced

development time, cost and faster deployment to market. Another benefit of cross-

platform development is that it ensures the design of the application is uniform across

platforms. A few frameworks are available, but the two most widely supported are React

Native and Flutter [20].

2.3.2.1 React Native (Adel)

React Native is a cross-platform framework developed by Facebook in 2015. In React

Native, the application logic is written in JavaScript and is connected to the native SDK

using a bridge which serves as an interpreter. This bridge comprises of two layers: The

communication layer, and the React Native API. The first is the native modules

responsible for communicating with the native SDK. These native modules are written in

Objective-C for iOS and Java for Android. The second layer of the bridge is the React

Native API written JavaScript. React Native has all of the advantages of cross-platform

development but lacks performance speed due to the communication delays of the bridge.

2.3.2.2 Flutter (Adel)

Flutter is a cross-platform framework developed by Google in 2017, which uses the dart

programming language. In Flutter everything is made of widgets which are the building

blocks of the application. A widget can be anything from an animation, image, text,

gesture, to any other user interface component. These widgets are compiled to native ARM

code ahead of time using native libraries. Flutter has all the advantages of cross-platform

development with the added benefit of a long list of built-in Widgets, making development

9 2 Background Research

relatively simple. The only drawback is the Flutter application occupies a larger amount

of space due to the use of built-in widgets and not platform widgets.

As the project has a limited timeframe, native development would not be feasible. With

the possibility of React Native communication delays hindering the real-time performance

of oscilloscope, Flutter was chosen as the tool used in this project.

2.4 Other Applications (Leonardo)

The Dual-Channel Function Generator [21] and the AUDio Measurement System [22] are

third-party software currently being used with the kits.

2.4.1 Dual-Channel Function Generator (Leonardo)

The Dual-Channel Function Generator developed by Keuwlsoft [21], can be downloaded

from the Google Play Store and is the application currently recommended to be used with

the kits. For example, it is used in the tutorial video on how to use the Music Mixer board

on the website [10].

Figure 8: Snippet of the Dual Channel Function Generator application (sourced from [21])

As this application is already used with the kits, many aspects were used to inspire the

user interface of the project. Of note is the ability to change between three distinct

waveforms, output to the left and right channel independently, and change the left and

right channel settings during operation.

2.4.2 AUDio MEasurement System (Leonardo)

The AUDio Measurement System is a desktop software for audio measurement and can

be downloaded from SourceForge [22]. It was also mentioned in the project specification

and used in the training video to use the Music Mixer kit on the website. As a desktop

software, only the functionality was used for inspiration, as the user interface was for a

desktop, not a mobile, application. However, the input settings and graphing style

influenced design decisions and implementation.

10 2 Background Research

Figure 9: AUDio MEasurement System in the oscilloscope tab (sourced from [22])

2.5 Standards of Design (Eamonn)

2.5.1 Model View Controller (Eamonn)

Figure 10: MVC flow diagram (recreated from [23])

The Model View Controller (MVC) standard was chosen to ensure that the coding of the

project adhered to a consistent quality and structure level. The MVC standard is a method

of segregating object-oriented programming to show the different ways of operation. The

process of drawing an on-screen update is cyclical [23]. The user interacts with the device,

causing a controller update. This is then sent to the model, generating change in the model.

The difference in the model is updated to the view to display the user the most up-to-date

information.

2.5.1.1 Model (Eamonn)

The model is concerned with the memory storage and variables used in the operation of

the class. The requirements are that the model contains the relevant variables that can be

changed and interacted with via the controller, displayed by the view.

11 2 Background Research

2.5.1.2 View (Eamonn)

The view is concerned with the display (user interface) of the model on screen for the user

to see. The view contains all the information about the stylistic and visual aspects of the

display. It often refers to the model variables using getters that allow the view to update

when the model is updated.

2.5.1.3 Controller (Eamonn)

The controller is the functional part of the class. The controller handles the user inputs to

update the model (which in turn updates the view). The controller contains all the methods

and function calls that invoke setters in the model to interface with the user inputs

correctly.

2.5.1.4 MVC Concerning this Project (Eamonn)

Figure 11: The MVC extended to include a hardware interface

This project has taken the MVC design and adapted it to work for the requirements. Flutter

has much of this MVC design already embedded in the tools used. Since it is an object-

oriented programming language that focuses on GUI aspects, the classes are already

segregated to support MVC.

One area in which MVC does not explicitly have any support is handling hardware

input/output variables. This consideration is made more difficult because of how Flutter

handles native coding for hardware implementations, as it is written in a different coding

language. As a result, the MVC design has been extended to include a hardware interface

connected to the model. Hence, the model updates the hardware output, and the hardware

input updates the model.

12 2 Background Research

2.5.2 Version Control System (Eamonn)

To ensure that the project could be correctly managed and full accountability in the coding

practices, the University of Southampton GitLab (a Version Control System or VCS) was

used. The benefits of a VCS are the complete history of code, the ability to branch and

merge, and full traceability for the changes made [24].

 13

3 Specification (Eamonn)

3.1.1 Core Specification (Eamonn)

A complete specification (appendix B) was created from a discussion with the client and

the project supervisor building from the initial project brief (appendix A). The agreement

in the specification was that the following list of core features was required for the

application.

• Visualisation of an input signal from the microphone

- 44.1kHz sample rate at 16-bit resolution

- Ability to change the scale, relative phase to the generated signals and auto set

• Signal generator through the audio port

- A maximum of 44.1kHz maximum voltages is 2V peak-to-peak at a 16-bit resolution at

loads of 100-600 Ohms impedance

- Two individual mono-channel signals on the left and right audio channel

- Sine, square, triangle waves, music samples as default options

- Ability to change the amplitude, relative phase, frequency

- Can be individually turned off and on (if both are off, then music can be played)

- To be directly visualisable alongside the input signal from the microphone

• Instruction sets for experiments

- Targeted at students to follow (enabling simple lesson plans for teachers)

- Covers all the material already available on the webpages

- Provides contextual background knowledge and theory about the experiment

• User interface

- Targeted primarily at students to use, but also with teachers in mind

- Links to UKESF & University of Southampton tools

- Branding and colour scheme matching UKESF and Electronics Everywhere

- Focusing on functional features to support experiments, without too many additional

to avoid an overwhelming interface

- Save/load slots to retain specific configurations

3.1.2 Stretch Goals (Eamonn)

Along with the original specification, a list of “stretch goals” were created. These tasks

were not required for the project to be successful; however, it would enhance the

experience of using the application. These included:

• User interface

- Pinch zooms and edits for signals

- Interactive pictures of boards to give information about the operation

- Addition instructional tasks to produce certain output signals (within tolerances) based

on changing the circuit/signal configuration (providing the more adept students with a

chance to explore the more difficult application of physics, i.e. using these two output

signals, and using the board, produce a signal that is a mix of the first two)

• Logic analyser

- Information on the board included within the application

- Instructions for the experiments on the logic analyser found on the website

- Produce a technical plan for implementing a logic analyser with the application

(including hardware if required)

 15

4 Design and Implementation

4.1 Initial Design (Eamonn)

For many of the initial design ideas of the application, a collaborative interface design

tool, Figma, was used. Once these initial designs were made, the team could more

deeply think about the interactions within the application (Figure 12 shows these initial

designs). This allowed for an iterative process of development. Once the team had

developed a version, used it, and thought of feedback/changes made, it was then iterated

upon for the final design. These reviews and iterations occurred in the sprints of the

project (this will be discussed in 7).

4.1.1 Model View Controller (Eamonn)

The Model View Controller (as explained in 2.5.1) was extremely influential in the

project. The additional adaptation made to include the native side was instrumental in

incorporating this software model to the project.

Initially, the decision was made to split every page and widget up into this file structure.

This meant creating a model, a view, and a controller file for each implementation. This

was quickly changed to only need an MVC structure for the more complicated pages or

widgets in the project (for example, the Music Mixer practical page).

The benefit of handling the more complicated pages in this way meant that depreciated

code, variables or functions were quickly seen, and cleared up. It also benefited from

handling scope issues that might have caused some of the more complicated practical page

features to be more challenging to implement. In this way, the benefit of the MVC

structure was mainly in the pages where multiple team members worked in, and in

combination with the VCS the benefits meant quick merging.

16 4 Design and Implementation

Figure 12: The original application layout designed on Figma at the start of the project

17 4 Design and Implementation

4.2 Hardware Implementation (Eamonn)

Part of the requirement of the application is to interface with the headphone port (or

auxiliary port) to generate and receive signals. Native code was developed on both

platforms individually to implement these features, with the implementation being

specific to each platform. The Android backend is written in Java, and the iOS backend is

developed in Objective-C. These native implementations, while being written in different

languages, are functionally identical. The native backend implementation interfaces with

the Flutter frontend to send data to and from the native side to Flutter.

4.2.1 Signal Generator (Eamonn)

The signal generator required producing three signals: a sine wave, a triangle wave, and a

square wave. The respective formulae are included in Table 1, and these are the basis of

the formulae used in the native implementations. The 𝑓 symbol in the following formulae

represents frequency, and the 𝜃 symbol represents the relative phase (in radians) of the

signals.

Table 1: Mathematical formulae for different periodic signals

Sine 𝑠𝑖𝑛(2𝜋𝑓 + 𝜃)

Triangle 2

𝜋
arcsin(sin(2𝜋𝑓 + 𝜃))

Square 𝑠𝑖𝑔𝑛(sin(2𝜋𝑓 + 𝜃))

The combined implementation on the Flutter side of the project involved setting variables

through a MethodChannel. This is essentially a method of creating functions called on the

native application from the shared codebase. Once the required variables were set, and the

native code had been implemented, it became a simple case of aligning iOS and Android

functions.

4.2.1.1 Android (Eamonn)

The signal generation implementation on Android involved using the built-in Android

libraries that allow interfacing with the audio port to use generated tones. The Android

implementation uses a thread that repeatedly fills the output buffer. These variables can

be updated using a MethodChannel to regenerate the array which fills the output buffer.

Using the native AudioTrack library, the audio output is set up as a stereo music stream,

with 16-bit PCM encoding.

The output buffers size is determined by the sample rate and the refresh time of the buffer.

Since the tone could be changing rapidly when a user interacts with a slider, and the output

of the device should reflect this, the refresh time was set to 0.1 seconds. The sample rate

is fixed at the maximum sample rate of the device (which for most devices is 44100 Hz).

This buffer is filled using the formulae described in Table 1, with the actual code shown

in Figure 13.

The phase offset variables in the formulae are in radians, yet in the code are in degree. As

a result, the conversion is made in this implementation. The amplitude value ranges from

zero to one, and as a result, is a pre-scalar of the maximum output amplitude of the phone.

Combining these factors ensures that the output of “tempCalculation”, which is later

appended into the output buffer, represents the signal shown on the graphical user

18 4 Design and Implementation

interface and can be measured and tested with external equipment to match the expected

output.

Figure 13: The Android implementation of the signal generator to fill the buffers

4.2.1.2 iOS (Foivos)

On iOS, a similar implementation to Android was designed using the built-in library,

AudioUnit. The lowest-level library was used as the more abstracted libraries do not easily

allow for synthesising audio for output. The variables used to generate the signal are

updated through the Flutter side of the project using the same MethodChannel as Android.

The AudioUnit for audio output is initialised as a dual-channel 32-bit floating-point Linear

PCM to generate separate tones between the left and right channel. This was chosen

because the most optimal float format on iOS is 8-bits relating to the exponent, and 24-

bits relating to the fractional component [25]. The 32-bit implementation showed

efficiency throughout testing and was, therefore, not changed. Additionally, a sample rate

of 44.1kHz was desired; however, that will depend on the iOS device and audio output

hardware.

It is also worth mentioning that the AudioUnit for playback is initialised whenever the

practical page is launched and is destroyed whenever it closes (i.e. scenarios where the

notification bar is visible). Once the AudioUnit is created and initialised, it will only run

if(leftTurnedOn){

 switch(leftWaveType){

 case sine:

 tempCalculation =

 (short) (Math.sin(2 * Math.PI * i * leftFrequency / sampleRate

 - ((Math.PI/180) * leftPhaseOffset))

 * (0x7FFF * leftAmplitude));

 break;

 case triangle:

 tempCalculation = (short) ((2 / Math.PI)

 * Math.asin(Math.sin(2 * Math.PI * i * leftFrequency / sampleRate

 - ((Math.PI/180) * leftPhaseOffset)))

 * (0x7FFF * leftAmplitude));

 break;

 case square:

 tempCalculation =

 (short) (Math.signum(Math.sin(2 * Math.PI * i * leftFrequency / sampleRate

 - ((Math.PI/180) * leftPhaseOffset)))

 * (0x7FFF * leftAmplitude));

 break;

 default:

 tempCalculation = (short) 0;

 }

} else {

 tempCalculation = (short) 0;

}

19 4 Design and Implementation

using AudioOutputUnitStarts. At this point, no parameters can be modified unless the

AudioUnit is uninitialised.

Like Android, the iOS implementation uses a thread that repeatedly fills in the output

buffers according to the client-side parameters. The size of the buffer is automatically

determined, and each frame on the buffer must be filled in with signal values. The buffer

is filled by the code in Figure 14 where the integer variable “WaveTypeLeft” (ranging

from one to three) represents a sine, square, and triangle wave, respectively. If the channel

is not switched on, the frames will be filled up with zeros. Additionally, after every

iteration, the current angle is mapped from 0 to 2π and stored in a buffer, allowing a

smooth transition when the next thread is executed. The phase offset variable is set in

degrees on the client-side and converted to radian on the native implementation.

Figure 14: The iOS implementation of the signal generator to fill the buffers

4.2.2 Oscilloscope (Foivos)

The oscilloscope required a constant stream of information from the native application

into the Flutter project. This is a much different implementation to the signal generator,

which only needed updates intermittently. This required a different kind of Flutter

communication channel known as an EventChannel. This essentially allows the Flutter

side of the project to create a listener that runs on an independent thread. The thread

responds to a stream of information, rather than invoking a function. Doing this made it

possible to handle the new information being returned from the microphone to display it

without freezing the display.

Unfortunately, the Flutter EventChannel datatypes do not offer support for 16-bit signed

lists to be transferred. Therefore, the 16-bit microphone stream is converted to an 8-bit

with twice the number of elements. Table 2 demonstrates this operation, where 𝑋𝑁

if (ChannelONLeft) {

 if (WaveTypeLeft == 1) {

 BufferLeft[Frame] = SigNumber(

 sin(Controller->ThetaLeft - Controller->PhaseOffsetRadLeft))

 * AmplitudeLeft;

 } else if (WaveTypeLeft == 2) {

 BufferLeft[Frame] = ((2/M_PI) * asin(

 sin(Controller->ThetaLeft - Controller->PhaseOffsetRadLeft))

 * AmplitudeLeft);

 } else {

 BufferLeft[Frame] = sin(Controller->ThetaLeft - Controller->PhaseOffsetRadLeft)

 * AmplitudeLeft;

 }

 Controller->ThetaLeft += Controller->ThetaIncrementLeft;

 if (Controller->ThetaLeft > 2.0 * M_PI) {

 Controller->ThetaLeft -= 2.0 * M_PI;

 }

} else {

 BufferLeft[Frame] = 0;

}

20 4 Design and Implementation

represents the 16-bit input buffer, and the two 8-bit lists 𝑌𝑁:1 & 𝑌𝑁:2 represent the

transformation. The 8-bit list is then converted back into a 16-bit using the inverse

operation once received on Flutter.

Table 2: Mapping of samples to the Flutter 8-bit event stream buffer

Bit N 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

𝑿𝑵 𝑋16 𝑋15 𝑋14 𝑋13 𝑋12 𝑋11 𝑋10 𝑋9 𝑋8 𝑋7 𝑋6 𝑋5 𝑋4 𝑋3 𝑋2 𝑋1

𝒀𝑵:𝟏 𝑋8 𝑋7 𝑋6 𝑋5 𝑋4 𝑋3 𝑋2 𝑋1

𝒀𝑵:𝟐 𝑋16 𝑋15 𝑋14 𝑋13 𝑋12 𝑋11 𝑋10 𝑋9

4.2.2.1 Android (Gavin)

The oscilloscope implementation on Android involved using and editing the Flutter

package mic_stream [5]. This package uses native Android functions to provide a PCM

stream at a specified sample rate, with a specified microphone source. The package uses

AudioRecord [26], which records audio from the specified input hardware of the phone

(AudioSource.MIC in this case) as seen in Figure 15. The sample rate is specified at the

maximum value of 44.1 kHz as defined in the specification. The channel configuration is

set to mono as the input signal received from the Music Mixer board is mono.

Figure 15: Configuration of the mic_stream library for Android oscilloscope implementation

This recording implements PCM to record the audio, which is then sent in a stream to the

Flutter side of the project. The minimum buffer size on Android phones is hardware

dependent. As a result, the operation of AudioRecord is dictated by the sample rate,

channel configuration and audio format. The minimum buffer size is calculated and used,

as seen in Figure 15.

4.2.2.2 iOS (Foivos)

Similar to the signal generator, the AudioUnit API was used for the oscilloscope to capture

a PCM stream at a sample rate of 44.1kHz from the microphone input source. The

recording unit is initialised as a single-channel 16-bit integer linear PCM for the mono

output of the Music Mixer board. The AudioUnit for the oscilloscope is initialised in the

same function as the signal generator. As the oscilloscope input is only a single channel,

a 16-bit floating-point value was used. This is different from the audio output, which is

32-bit due to it being a dual channel.

Finally, once each sample buffer has been filled, an event is triggered that sends this

information to Flutter. A listener is attached to the stream of the EventChannel to process

the values for display on the GUI.

private int AUDIO_SOURCE = MediaRecorder.AudioSource.MIC;

private int SAMPLE_RATE = 44100;

private int CHANNEL_CONFIG = AudioFormat.CHANNEL_IN_MONO;

private int AUDIO_FORMAT = AudioFormat.ENCODING_PCM_16BIT;

private int BUFFER_SIZE = AudioRecord.getMinBufferSize(SAMPLE_RATE, CHANNEL_CONFIG,

 AUDIO_FORMAT);

21 4 Design and Implementation

4.3 Home Screen (Leonardo)

4.3.1 Page Components (Leonardo)

Initially, for the design of the home screen, it was decided that the following components

would be necessary: a top navigation bar with the title of the application (initially chosen

as “EE Toolkit” but later renamed to “Electronics Everywhere”); button links to the

respective kits; links to the websites for the UKESF [27], Electronics Everywhere [8] and

University of Southampton outreach kits [9]. A bottom navigation bar was initially

included to switch between the home, about and settings pages. However, this was later

changed for a more compact home screen without a global settings page.

4.3.2 Initial Design and Implementation (Leonardo)

Figure 16: The original designs for the home screen showing (Left) the about page (Middle) the home page

(Right) settings page

Figure 16 shows the initial design for the home screen in Figma. The original idea was to

have a simple design with colours and styling similar to the UKESF website. It was

initially decided to include an about page and a settings page with the home screen. This

was decided from background research on other applications, as many applications have

an about page and a global settings page (i.e. Facebook or Twitter). The initial design was

implemented during the first two sprints, using the Scaffold widget, from the material

components widgets, for the home screen. The AppBar widget was used for the top

navigation bar and the BottomNavigationBar widget for the bottom navigation bar. For

each page, custom widgets were made for similar components, for example, a custom

container for a kit button with parameters for the background colour, text and linked page.

4.3.3 Design Changes and Considerations (Leonardo)

After discussing the initial design and its implementation, changes were made based on

team discussion, questionnaire feedback, and practical implementation. One iteration

included changing the whole colour scheme of the application and style to look more like

22 4 Design and Implementation

the UKESF styling found on the website. The decision was made as the initial design did

not completely resemble the website and branding, that was essential for the client.

The change was implemented by adding a UKESF styled line widget using the

CustomPaint widget. Images of the boards were added to the containers, and the about

widgets linking to websites were branded using UKESF styling. The widgets used for

theming are discussed further in 4.3.4.2.

After implementing the initial design, it was decided that there was no use for a global

settings page for what was planned to be implemented. Therefore, the about page was

merged into the main page to reduce space wastage, and the settings page was removed.

For concurrency throughout the application, the top navigation bar layout was changed so

that the icon to the left of the title would either be the home icon or the UKESF logo and

the right icon default to the settings cog.

4.3.4 Final Design and Implementation (Leonardo)

Figure 17: Final design of the home screen

The home screen is the landing screen for the user with the elements shown in Figure 17.

The top of the screen has a navigation bar with the UKESF logo on the left and the

application title. The main body of the page is split into two sections by a line widget with

UKESF styling. The first section includes button links to the Music Mixer screen and

Logic and Arithmetic screen; with an image of the respective kit and a brief explanation

of the destination of the button. The second section includes three reference links to

Electronics Everywhere, UKESF, and the Outreach Kits page from University of

Southampton like the initial design. The home screen was implemented from the

23 4 Design and Implementation

StatelessWidget class, using the Scaffold widget with a custom AppBar for the top

navigation bar and a ListView widget for the main body.

4.3.4.1 Top Navigation Bar (Leonardo)

A custom AppBar widget was made for the top navigation bar throughout the application,

with parameters for the title, theme name and optional settings parameters. Figure 18

shows how the top navigation bar is separated with the leading icon, title and action icon.

Figure 18: AppBar widget showing the separate parts

The background colour is set depending on the theme name, as either red, black or white.

If the main theme is selected, the leading icon is set to the UKESF logo. If any other theme,

then the leading icon is set to either the home icon or a back arrow depending on the

optional parameters. If the page links to a settings page, then the cog icon is enabled.

The top navigation bar implements PreferredSizeWidget to set the height of the

application bar to 56 pixels. An optional boolean parameter is used to determine whether

the bar includes a settings page, and optional parameters for whether the page uses a back

icon, with a parameter for the widget to go back to and the page index.

The Navigator API was used to move between pages – specifically the pushReplacement

and push methods depending on whether the link was to the home page.

4.3.4.2 UKESF Themed Widgets (Leonardo)

As shown in Figure 19, the kit containers were implemented using the Container widget

wrapped in an InkWell widget. Inside the container is a Column widget for the image of

the kit and a brief description. Each of the containers has the width set to half the width of

the screen minus 20, to account for the padding. The height of the image container was

set using the AspectRatio widget set to a ratio of 16:9.

Figure 19: Container widgets found on the home screen for the kits

The about containers, which link to the Electronic Everywhere kits page; UKESF home

page; Electronics Everywhere page, were styled using UKESF theming from the website,

shown in Figure 20. The “Find out more” button is implemented with the Stack and

Positioned widgets to show on the container. The width distribution of the image and text

used the Expanded widget, with a flex of three for the image and flex of seven for the text

portion. The package url_launcher [2] was used with the functions canLaunch and launch

inside an asynchronous function, with the await property to open the website in-browser.

24 4 Design and Implementation

Figure 20: Examples of the styling from the UKESF website (sourced [27])

The coloured line UKESF styled widget was made using the CustomPainter widget with

several different parameters – including the colour, size and positioning. There are three

offset parameters to position the widget, including the left and right offset, and height

offset. Optional parameters are used to produce a diagonal line (if that is desired). Two

percentage parameters are used to determine the percentage of the width to start and end

the deviation, and a parameter is used for the height, as shown in Figure 21. The line is

drawn using the Path class and canvas to draw the line and the circle at the end of the line.

Figure 21: PCB trace widget taken from (Left) the UKESF website [27] (Right) the application

4.3.4.3 Colour Scheme and Font (Leonardo)

The UKESF website uses a white background behind different coloured widgets, so it was

decided to use a white navigation bar against a slightly grey background. The only

significant colours chosen for the home page were red and black for the kit link button, to

resemble the actual Electronics Everywhere kits. The primary colours used for text in the

UKESF website are white, grey, and black depending on the background colour and the

font used for the application was also chosen to be Open Sans as on the website.

25 4 Design and Implementation

4.4 About Page (Leonardo)

4.4.1 Page Components (Leonardo)

Figure 22: About page for (Left) the Music Mixer (Right) the Logic and Arithmetic

The about page includes a container widget, which links to the respective interactive

image page for the kit, and a widget with an image and information about the kit. These

two parts are separated with a line widget, as shown in Figure 22.

4.4.2 Design Decisions (Leonardo)

Originally from the initial design, an about page was not included. However, it was

decided to include it to have information about the equipment and a link to the interactive

image of the kit. The colour of the AppBar was chosen to resemble the colour of the

respective kit, red for the Music Mixer section, and black for the Logic and Arithmetic

section.

4.4.3 Implementation (Leonardo)

The about page includes a line UKESF custom widget separating two containers – one

that takes the user to the interactive image page and another that contains information

about the Music Mixer kit.

Both widgets are styled with UKESF theming. The top link widget is styled similar to the

widget on the website shown in Figure 23. However, after feedback, the section was

changed to have an angle to avoid being confused for a slider.

26 4 Design and Implementation

Figure 23: Button widget from (Left) the UKESF website [27] (Right) the application

The bottom widget includes information about the kit is styled like one of the widgets on

the website, as shown in Figure 24. However, the style is altered to fit a phone screen

better. It does not link to any other page.

Figure 24: Information widget from (Left) the UKESF website [27] (Right) the application

4.4.4 Music Mixer Screen (Leonardo)

After pressing the Music Mixer kit container on the home page, the top navigation bar

styling changes to the Music Mixer theme. The default white is changed to the red used

on the website to line with the colours on the physical kit and website. The logo is replaced

with a home icon allowing the user to return to the home screen. There is also a settings

icon to change the settings for the practical page. The bottom navigation bar switches

between the about page, exercise page, and practical page.

The Music Mixer screen is implemented similar to the home screen, but with changed

parameters for the AppBar widget, and includes a BottomNavigationBar widget to switch

between tabs by updating the current index.

4.4.5 Logic and Arithmetic Screen (Leonardo)

The about page for the Logic and Arithmetic screen is the same but with different

parameters for the custom widgets such as colour, image and text content. The screen itself

only has two tabs for the bottom navigation bar: The about page and exercises page. It

also does not have a settings page, as shown in Figure 22.

27 4 Design and Implementation

4.5 Interactive Image Page (Adel)

4.5.1 Page Content (Adel)

The original idea for the interactive image page was to include a section where users can

familiarise themselves with the available boards and discover the electronics and concepts

at their core.

The initial design described the page initialising as an image of the selected board filling

the screen, with a transparent button stacked above the image for each section of the board.

If the user pressed this button, a tooltip should appear displaying simple information about

the board. An additional information page for each of the sections/component of the two

boards can be opened from this tooltip. The page should also allow the user to zoom and

pan the image. These pages show the name and a brief description of the component and

explain the electronics behind the scene. Figure 25 shows the initial design of the

interactive image and the additional information page for the NAND Gate on the Logic

and Arithmetic board.

Figure 25: Initial design of the interactive pages for (Left) the Music Mixer (Middle) the Logic and Arithmetic

(Right) the additional information

In the initial design of the interactive image page, a default application bar was used with

a back button which would return the user to the previous page. The body of the page was

a container that used the Stack widget to layer buttons on top of the image. The tooltips

were not yet implemented, however, links to each section of the additional information

page of the boards were implemented using a FlatButton widget was used with the colour

set to transparent with a green border to indicate each section. A Positioned widget was

used to correctly place the button, with the position and size of the buttons being

hardcoded. The onPressed function of each button navigated to the relevant additional

information page.

The additional information pages were created as a MaterialPageRoue class that would

return a Scaffold of an AppBar and body. The body was comprised of Column widget

with its children being the text and image widgets. The ScrollView widget was used to

28 4 Design and Implementation

enable the body to overflow the screen and enable scrolling feature. A SizedBox widget

was used to create spacing between the texts and images.

4.5.2 Design Changes (Adel)

After testing the initial implementation on multiple devices, some issues with the text and

image sizes were found. The sizes and positions being hardcoded meant on devices with

different screen sizes, the size and position of the buttons were out of sync with the image

of the board. This resulted in the button not overlaying its corresponding section. A similar

issue was found in the additional information pages where the text and images would be

too small on larger screens and too big on smaller ones. It was found that the canvas size

of some of the image files used was too small, and Flutter was restricted in displaying the

images. The size and position of elements in the application needed to be changed to be

relative to the host device screen size to fix this. It was also decided that SizedBox widget

used to create spacing should be removed and replaced with padding and margin added to

text and image containers. These padding and margins should also be relative to the size

of the screen.

One of the missing features was the ability to zoom into the image and pan around. This

was important to allow seeing all the elements on the board more clearly. The green

borders of the buttons did not align with the branding of the application, requiring a

change. The implementation had to clearly show the sections that can be interacted with

without distorting the image.

Another missing feature was an intermediary tooltip page between the interactive page

and the additional information pages. The additional information should appear in both

the tooltip and on its independent page. The tooltip would have several pages to contain

all the information of the additional information page. The additional information page

would be mostly unchanged from the initial development, apart from adding some padding

and animations.

4.5.3 Final Design and Implementation (Adel)

To ensure the images are the correct size for the display, the size of the screen must be

determined. This is done with the help of the MediaQuery function. When called, this

function returns data about the current media, such as the screen size. One concern about

using the MediaQuery function is that it provides the full-screen sizes, not accounting for

any toolbars. To account for this, the AppBar and toolbar heights can be subtracted to get

the total available space for the image.

Once the maximum size is determined, it is possible to use the same algorithms initially

hardcoded. This was done by replacing the elements hardcoded height and width with a

fraction of the height and width of the page. The text size and image size of the additional

information pages were also set relative to the screen size. The sizedBox widgets were

also removed and replaced with container widgets with padding that included the text and

images. This means that the layout will stay consistent irrelevant of the device used.

29 4 Design and Implementation

Figure 26: Final design of the tooltip for the interactive image page

For the tooltip design, multiple methods were considered, including AnimatedBox,

InkWell and AlertDialog widgets. The AlertDialog widget method was chosen as the

built-in functionalities created a more coherent and user-friendly interface. The final

design of the tooltips can be seen in Figure 26.

All the content and the name of the tooltips were stored using a map. A custom tooltip

class generates the tooltips to display. This class receives the name of the tooltip and

returns an AlertDialog widget, containing a column widget with three containers as

children. The first container displays the name of the tooltip and the number of available

tooltips. The second is a container which fetches its content from the map, and the third

container consists of the previous page and next page buttons which when pressed which

cycle through the tooltips by setting the state of the tooltip.

 The AnimatedSwitcher widget was used to smooth the transition between the tooltips.

The AlertDialog action was set using the more information button which would route to

the additional information pages. To incorporate the UKESF theme, the red, blue and

white colours of the UKESF website was used for the tooltips.

In the interactive image page, the zoom and pan features were added using the

interactiveViewer widget with a minimum scale of one and a maximum scale of five. To

indicate the sections of the board that can be interacted with, a custom animation was used.

The animation uses a timer that cycles trough each section of the board image and

highlights it by changing the opacity of the button from zero to one and back to zero before

moving to the next section. This highlights each interactable section of the board. Global

variables are used for the duration of the animation and the time between animation

completion and restart. Figure 27 shows all the Logic and Arithmetic page sections and

how each section will look when they are highlighted. Each adjacent section is highlighted

in alternating UKESF colours (red and blue) to align with the UKESF theme.

30 4 Design and Implementation

Figure 27: Tooltip animation showing the passage of time from left-to-right

Another addition was replacing the circuit diagram and truth table of the gates in the Logic

and Arithmetic additional information pages with a custom rotatingImage widget. This

widget takes several images and cycles through them. The images used were edited

versions of the original images so that when cycled through, they show the gates for

different inputs. The rotatingImage widget has the advantage of using less memory than

GIFs or video as it only uses five images. Figure 28 shows how the rotating image widget

cycles through for the NAND Gate additional information page. The circuit diagram also

cycles through all different inputs, and the truth table starts empty and fill up and cycles

through. The speed at which the widget switches between the images can be modified

through a global variable.

In the final design of the interactive images page, the starting point is the image spanning

the page where the user can zoom in and pan around the board. The custom tooltip

animation will cycle through all the board sections indicating that what is interactable.

Once the user interacts with one of the sections, the corresponding tooltip will give the

user useful information about the section and its use. The next page and previous page can

be used to navigate through the tooltips. The more information button will take the user

to the additional information page to find out more about the physics and electronics

operation.

31 4 Design and Implementation

Figure 28: RotatingImage widget for NAND Gate additional information page (cycle goes top-left, top-right, bottom-

left, bottom-right)

32 4 Design and Implementation

4.6 Exercises Pages (Leonardo)

4.6.1 Page Components (Leonardo)

At the start of the project, it was decided to include a page where the user could view the

existing lab notes from within the application. This page should support tabs to select

which lab to follow; a link to the existing lab notes; a separate page for each section in the

notes to follow along step by step.

4.6.2 Initial Design and Implementation (Leonardo)

Figure 29: Initial Design for the exercise page

Figure 29 shows the initial design for the exercise page for the Music Mixer screen, where

the user first chooses which lab to follow along. For example, after selecting the Planck’s

Constant Lab, the user is redirected to a page showing information about the lab, with an

embedded video about using the Planck’s Constant part of the kit. In that page would be

a button link to another page with steps for each section.

The initial design was implemented using the PageView widget builder with a custom

container for the lab information. A template lab container was created so that a list of

labs would be used to reduce code repetition. The animation of the PageView slider was

made using a controller with a listener that updates a list with the extra padding for each

lab container so that when swiping through the labs, the selected lab container would pop

out. The list is updated so that the lab on the current page has no extra margin but those

not on the current page have an extra margin.

4.6.3 Design Changes and Considerations (Leonardo)

Numerous changes were made to the initial design of the pages based on practical

implementation and team discussions. The theming of the page changed to fit more in line

with the UKESF branding to the entire application. For example, the purple was replaced

33 4 Design and Implementation

with blue and red, and the rounded corners were replaced with rectangular ones. For each

of the four lab sections, an image of the kit being used with the lab was added to the

containers. The design of the second information page was also changed in this respect.

The primary button was swapped from “follow along” to the lab notes source to focus on

the existing lab notes. The entire container was made pressable, using the InkWell widget,

instead of just the “follow along” button to make it easier for the user to choose a lab

section to follow.

The tab animation was smoothed out so that the container transitions would not be

instantaneous. A steps section was added after choosing a lab for the user to follow along

easily. This design choice was made to make following along to the lab notes more

engaging.

After deciding to include exercise pages for the Logic and Arithmetic section, a new

design had to be made to resemble the training handbook, as the styling was different to

the template widgets made for the Music Mixer.

4.6.4 Final Design and Implementation (Leonardo)

The final design for the exercise pages is shown in Figure 30, with all the changes

discussed in 4.6.3.

Figure 30: Final design for the exercise pages

4.6.4.1 Lab Selection Page (Leonardo)

The first page for the lab selection includes the page view, where the user may swipe

between containers for different sections from the lab notes training handbook [28]. Figure

31 shows the smooth transitions between the sections.

34 4 Design and Implementation

Figure 31: The exercises containers (Left) static (Right) in a transition

Figure 32: Code for updating the padding for each of the lab containers

The lab container was implemented similarly to the about widget in style but with extra

features. It takes the parameters of index, margin and list of the labs. Each lab includes a

section name, title, description, image and next screen. Each row has a flex number of

five, so the height of the image and body are the same. The top and bottom padding are

set by the margin variable, which updates depending on the current page. The code used

to calculate the margin for each page is shown in Figure 32.

for (int i = 0; i < labList.length; i++)

 _margins[i] = (i == _currentLab ? 0 : margin);

_controller =

 PageController(initialPage: 0, viewportFraction: viewportFraction)

 ..addListener(() {

 setState(() {

 _currentLab = _controller.page.round();

 for (int i = 0; i < labList.length; i++) {

 if (i <= _controller.page + 1 && i >= _controller.page - 1) {

 if (i >= _controller.page)

 _margins[i] = margin - ((_controller.page - (i - 1)) * margin);

 else if (i < _controller.page)

 _margins[i] = ((_controller.page - i) * margin);

 } else {

 _margins[i] = margin;

 }

 }

 });

 });

35 4 Design and Implementation

Above the section containers are dots to show the positioning of the current section index.

It was implemented with a custom widget for each dot, returning an AnimatedContainer

with a duration of 200 milliseconds. The dots have parameters for the colour and a boolean

to determine if the dot is active. If the dot is active, then the height is increased, and the

colour changed.

The button at the bottom of the page links to the source training handbook where the pdf

may be downloaded. Figure 33 shows the downloading of the lab notes after pressing the

button. The button was implemented using a custom widget returning a FlatButton

wrapping in a Padding widget, with parameters for the text, colour and source notes URL.

It uses the url_launcher package to open the URL in the browser.

Figure 33: Training handbook download after pressing the button on the Music Mixer lab page

4.6.4.2 Lab Information Page (Leonardo)

A page for each of the four lab sections was implemented as a StatelessWidget, shown in

Figure 34. The first widget on each page has a link to the website with the tutorial video

shown in the image and brief explanation. Under the video link widget is an image relating

to the lab followed by brief start instructions from the training handbook. There is a button

to start the lab at the bottom, which redirects the user to the step-by-step instructions

shown in Figure 35.

36 4 Design and Implementation

Figure 34: The four introduction pages for each section of the Music Mixer lab

This page was implemented using a custom StatelessWidget that takes parameters for the

title, header, video link text, URL, image, description, description image, page index and

page link. The body of the page is built with a ListView widget with elements for the

video link, text and button.

37 4 Design and Implementation

Figure 35: The four step-by-step pages for each section of the Music Mixer lab

Each of the pages has a link to a different StatefulWidget, as shown in Figure 35. The

parameters of this widget are the title, step-index, number of steps, and a list of the

completed steps. Most importantly is a list of Step widgets which form the actual body of

the page.

38 4 Design and Implementation

A step is updated to active if its index is greater than or equal to the index of the viewed

step. Its state is set by a list which is updated when the completed button is pressed. If the

next step button is pressed, then the index is increased. The opposite is done for the

unfinished and “go back” buttons.

4.6.5 Logic and Arithmetic Screen (Leonardo)

The exercise page for the Logic and Arithmetic screen was done after that of the Music

Mixer screen, so the main lab selection page was implemented the using the same widgets

used for the Music Mixer screen with different arguments as shown in Figure 36.

Figure 36: Exercises page for the Logic and Arithmetic screen

The logic problems [29] were used to model the design and content of the pages, as shown

in Figure 37. The colours used are the same as in the source pdf, and the structure is the

same. The main difference is the solutions at the end of the page that may be unhidden

when the user wants to see the solutions. Every solution for every problem has three steps,

like in the source pdf.

39 4 Design and Implementation

Figure 37: An example of the problem exercises for Logic and Arithmetic (Problem 2)

Like the Music Mixer labs, there is a list of custom lab page StatefulWidget that take

parameters to make the page with solutions. As parameters, it takes the title, the header

(in the orange container), the image, the description, page index, the question, the solution

steps and the table.

Figure 38: Image popup on the problem exercises for the Logic and Arithmetic

40 4 Design and Implementation

The body of the page is implemented with a ListView widget for the different sections.

The Table widget was used to recreate the table used in the pdf. As the information in the

solutions might be hard to read in smaller devices, a popup was added using the Dialog

widget for the images in the solutions. This is shown in Figure 38.

4.7 Settings Page (Leonardo)

4.7.1 Page Components and Design Considerations (Leonardo)

At the start of the project, it was decided that the main components in the settings page

would be general settings for the entire application. However, this design changed as only

two settings were implemented that could be changed. The first setting is the practical

page graph theme, which can either be light or dark. As most physics students might not

be used to the oscilloscope axis style and would be more accustomed to white background

styling, the second setting would toggle the axis style to resemble an oscilloscope or a

common axis. The switched-on colour was also changed to be the same blue used on the

website and throughout the application.

4.7.2 Final Design and Implementation (Leonardo)

The final design of the page is shown in Figure 39. The design did not change as much for

the body of the page and uses a Switch widget to toggle the setting in the practical page.

The setting containers themselves were implemented with the ListTile widget with the

Switch widget as the tile trailing widget. When the setting is changed, the values are

updated for both settings and the widget SharedPreferences is used to update the practical

page preferences. The discussion surrounding the addition of these graph configurations

and the graphical changes are shown in 4.8.4.2.

Figure 39: Final design of the settings page (Left) with dark mode enabled (Right) without dark mode enabled

4.8 Practical Page (Gavin)

The practical page for the Music Mixer kit contains the tools and interface needed to

interact with the Music Mixer board for experiments. This section is where students would

spend the most time, as they would be controlling the tools and viewing the signals all

from this page.

4.8.1 Design Considerations (Gavin)

As the user will be interacting with the practical page for any interactive experiments,

some considerations were made before development. Firstly, the oscilloscope and signal

generator should be able to run independently. There should be one view to see the signal

41 4 Design and Implementation

generated output, and another for the oscilloscope inputs. A third option to combine both

the oscilloscope and signal generator so that a user can control the outputs and see the

inputs simultaneously was named the “combined” mode. This “combined” mode allows

users to run experiments using a single device while still showing the required

information.

The practical page contains the signal generator, oscilloscope and combined modes and

so a method for switching between them was required. One idea was the ability to slide

left or right to change between tools, but this was dismissed as it might not have been

intuitive to use or that it might not have been clear to users how to change between modes.

Another idea was to display a sidebar that could be used to select each tool, that would be

permanently visible and therefore indicate the selected mode. This was deemed the best

solution for switching between modes and is further discussed in 4.8.3.

Both the signal generator and oscilloscope have parameters (or settings) that need to be

displayed and changeable. In other applications, such as the Keuwlsoft signal generator

application [21] shown in Figure 8, displays the settings permanently on the screen. One

proposal was to have a parameter menu for each tool that is collapsible or expandable to

maximise space for other parts of the page like the graph. This implementation is discussed

in 4.8.3.

The parameters included in this application were carefully selected to provide a balance

between functionality and ease of use. The fundamental features were required for the

tools to aid in experiments, but some other features like Fast Fourier Transform (FFT)

were outside of the scope of this application. The features to be included were discussed

when producing the initial specification in 3.

4.8.2 Page Layout and Overview Design (Gavin)

Figure 40: practical page with annotations of the three main sections

42 4 Design and Implementation

With the considerations in 4.8.1, the resulting design contains three main sections: the

parameter menu, the sidebar, and the graphing. An annotated image can be seen in Figure

40.

As the priority of this page is running experiments, the graphing section should take up

the majority of the screen. This allows the signals to be displayed as large as possible to

give users the best view for understanding the concepts explored in the experiments. The

parameter menu has been positioned such that it can be used while the graph is also visible.

This menu is also scrollable to ensure the menu does not take up any unnecessary space.

The mode currently selected and the other modes available are displayed in the sidebar to

make it clear to the user what is available.

4.8.3 Sidebar and Parameter Menu (Gavin)

There is a corresponding parameter menu that is used to control the operation of the mode.

The sidebar is a widget within the practical page that displays the mode selected and the

button to access the save/load slots. The parameter menu can be collapsed or expanded by

clicking the arrow section at the top of the sidebar. The sidebar slides in and out with the

parameter menu, so the sidebar is always visible. When the parameters menu is collapsed,

the sidebar is still visible. The parameter menu being expanded and contracted can be seen

in Figure 41. The purpose of collapsing the parameter menu is to maximise the size of the

graph section to give the user more detail to view. There is also an animation when

collapsing/expanding the menu. The menu translates horizontally, while the arrow to

collapse/expand the sidebar rotates 180° to indicate which way the menu can move.

Figure 41: Parameter menu and sidebar on the practical page (Left) expanded (Right) collapsed

Implementing a collapsible parameter menu was done so the user can observe the effects

that the parameters have on the signals displayed in the graph section while they are being

changed. To see the changes made concurrently gives the user the best ability to

understand and visualise the effect of changing certain aspects of the wave. When the user

has finished changing the parameters, they can collapse the parameters menu to expand

the space taken up by the graphs. This allows the user to observe the signals in the

maximum size possible. When analysing other applications that contain similar tools, the

controls took up the vast majority of the display and were permanent. However, in this

application, it is essential to visualise the links between the parameters and the outputs.

The Electronics Everywhere Application aims to aid learning and inspire students into the

industry, and the typical user would not be familiar with these tools and their behaviours,

so a more straightforward interface is required.

43 4 Design and Implementation

4.8.3.1 Signal Generator Parameter Menu (Gavin)

Figure 42: Signal generator parameter menu showing (Left) top section;

bottom section with (Middle-Left) left selected (Middle-Right) both selected (Right) right selected

A consistent accent colour is displayed throughout the parameter menu corresponding to

the signal affected by the buttons. For example, the left channel is displayed as light blue,

accented for all the sections that control this signal, as shown by the sliders in Figure 42.

The “Graph View” box configures the graphing layout and will be discussed in 4.8.4. The

“Outputting” box, shown in Figure 43, controls which generated signals are on or off (and

being output to the auxiliary cable). The text changes from black to white and the highlight

from grey to the trace colour to indicate a signal being on.

Figure 43: Outputting box with (Left) both signals turned on (Middle) left signal turned on (Right) none turned on

The application can generate two independent signals that correspond to the left and right

channels. The third mode, “Both”, controls both the left and right signals simultaneously.

Four parameters change the behaviour of each wave, the wave type, frequency, amplitude,

and phase. To edit the parameters of a specific channel, for example, the left signal, there

is a tabbed selection bar, as shown in Figure 44. When a tab is selected, the four parameters

can be adjusted to change the property of the signal shown on the graph (and being output

to the auxiliary cable). The parameter menu where each of the three signals is selected in

the tabbed selection bar is displayed in Figure 42.

44 4 Design and Implementation

Figure 44: Wave parameter selection tabs while the “Left” channel is selected

The tabbed selection bar was chosen as this seemed the most intuitive method of changing

between the selected signals. There is an animation when switching between tabs that slide

between the tabs. This animation helps make it clear to the user that the parameters affect

different signals. The accent colours in the parameter boxes match the tab colour to

indicate further which signal was being edited.

The signal generator supports three wave types: sine, square and triangle. The “Wave

Type” box controls these. There are three other boxes shown in Figure 45 that users can

change the values with a slider or a text value entry.

Figure 45: The user interface for editing (Top Left) Wave Type (Top Right) Frequency (Bottom Left) Amplitude

(Bottom Right) Phase

The underlined values seen on the parameter boxes can be selected to open a text entry

pop-up. An example of a text entry pop-up can be seen in Figure 46, which occurs after

selecting the underlined part of the frequency box when the left signal was being edited.

Figure 46: Text editing of the frequency for the left channel

The text entry allows for precise values to be inputted, giving the user fine control over

the parameter. The values input must conform to unique format and value constraints for

each variable type. The keyboard to enter the manual values is set to a numerical layout,

seen in Figure 46. The values are checked to be within the supported range upon every

keypress. For example, if the user typed 7000 for frequency, a message will remind the

45 4 Design and Implementation

user of the range allowed, as shown in Figure 47. Before any value is set, it is compared

against the range to ensure only valid values are set. The units of the parameter are

displayed at the right-hand side of the box.

Figure 47: Attempting to input an out-of-range value into the frequency text entry

4.8.3.2 Oscilloscope Parameter Menu (Gavin)

Figure 48: Oscilloscope parameter menu

The oscilloscope parameter menu can be seen in Figure 48. The horizontal scale controls

the time duration shown on the graph at any given time. The slider has 11 discrete steps

that correspond to the values in Table 3. The range of these durations has been chosen for

specific reasons. The three largest time scales (12, 6 and 2.4 seconds) are used to show

transient trends of more general features, since using the slowest 20 Hz signal generation

would appear too many times (240, 120 and 48 times respectively). Beyond this, the scales

are used to allow for good visibility of the signals at different scales. The rest of the scale

is chosen as a time period of 1.2 seconds at 20 Hz and a 60µs time period at 5000 Hz will

show 24 periods each.

Table 3: Horizontal scale steps and corresponding time duration values for graph

Step 1 2 3 4 5 6 7 8 9 10 11

Scale 1x 2x 5x 10x 20x 50x 100x 200x 500x 1000x 2000x

Time 12s 6s 2.4s 1.2s 600ms 240ms 120ms 60ms 2.4ms 120µs 60µs

A useful feature for observing an incoming signal is the ability to freeze the screen. This

is controlled by toggling the button in the “Freeze Screen” box. The button displays

“Running” when the incoming signal is displayed and displays “Frozen” then the signal

has been frozen. The colour also changes to indicate if the mode is on or not.

Another feature discussed in the specification was to include triggering for the incoming

wave. A periodic signal can be triggered by toggling the button in the “Triggering” box.

The button displays “Free-running” when it is inactive and “Triggered” when it is. This

functionality will be further discussed in 4.8.4.3.

46 4 Design and Implementation

4.8.3.3 Combined Parameter Menu (Gavin)

As shown in Figure 49, the combined parameter menu contains an instance of the signal

generator and oscilloscope parameter menus, with a few small changes. The graph view

box contains three options as opposed to the signal generators two, and there is an addition

of a PCB trace between sections.

Figure 49: Combined parameter menu (symbols representing a vertical continuation between sections)

4.8.4 Graphing (Gavin)

The graphing section is aimed at visualising the signals being generated and received by

the application. The page can either be used in signal generator mode, oscilloscope mode,

or combined mode. There are two generated signals, a single incoming signal, or all three

signals that need to be displayed simultaneously. The priority for this page is flexibility

for the user to configure the graphing layouts.

Both the signal generator and combined modes show multiple signals, and so when

discussing the design, it was decided that the graph layouts needed to allow the user to

configure the graph layout to best suit their learning experience. This page can run

experiments that demonstrate concepts such as superposition, which can be challenging

to comprehend and visualise. Some users might better visualise concepts with multiple

signals on a single graph, while others may find it easier with signals on separate graphs.

The “Graph View” box in the parameter menu is used to control the graph layouts. The

selector icon indicates the graph layout (seen on the left side of Figure 50). When a layout

is selected, the icon changes from black to white and the box is highlighted in blue. The

graph views for the signal generator mode can be seen in Figure 50. The demonstration of

the combined mode can be seen in Figure 51.

47 4 Design and Implementation

Figure 50: Signal generator mode showing (Top) two graphs (Bottom) one graph

Figure 51: Combined mode showing (Top) three graphs (Middle) two graphs (Bottom) one graph

48 4 Design and Implementation

4.8.4.1 Graph Signal Labels (Gavin)

Information on the wave parameters is placed at the top left of the graph area for any graph

showing a signal generated wave. This information is shown in a way as not to hide any

other important information on the graph. There is also an indication that the signal is on,

as there is an alert when the signal is switched off, and when multiple signals are being

shown on the same graph, there is a parameter text for each signal, all of these are shown

in Figure 52.

Figure 52: Text parameters displayed at the top left of the graph for (Left) a single signal on

(Middle) a single signal off (Right) multiple signals (one on, one off)

4.8.4.2 Graph Style Configuration (Gavin)

As previously discussed in 4.7, the user can also choose some settings for the aesthetics

of the graph. Some users may be more familiar with a traditional graph axis, while others

may prefer an oscilloscope axis. Dark and light mode was also included because it is

becoming more popular for applications and adds more choice for users. The default

settings are light mode, traditional graph axis, which was most likely the familiar case for

A-level physics students. The matrix of all combinations of theming are shown in Table 4

Table 4: Matrix of the four combinations of theme and grid style available

 Dark mode enabled Dark mode disabled

Oscilloscope

axis enabled

Oscilloscope

axis disabled

4.8.4.3 Graph Backend (Eamonn)

The graphing on the practical page has several different operation modes, relating to the

overall layout of the page. There are three primary considerations about the operation of

the graph, the scale, the triggering and how many samples to store and display.

The scale requires considering the mode of operation, as well as the intended use of that

mode. For example, if the page is in signal generator mode, the scale is automatically

calculated. The formula used to determine the scale index to select is shown in Figure 53.

49 4 Design and Implementation

This allows the signal generator graph to automatically scale to see the full detail of the

waves without any additional user input.

Figure 53: Code for finding the scale between two frequencies of signal generation

However, if the user is in either oscilloscope or combined screen mode, the scale is based

on the oscilloscope scale, set manually by the user. The scale values are chosen by the

notch the user has selected on the slider, relating to the values found in Table 3. The

number of points drawn for the signal generated graphs and the oscilloscope graphs are

fixed to keep performance high. The scale determines the steps used to generate the height

of the points for the signal generated points. It also determines the number (and steps) of

the input buffer to be drawn on the oscilloscope. The detail of how the buffers are drawn

will be discussed later in this section. Due to the combined page showing the scale set by

the user, and there being a fixed number of points, the details of the signal generated

graphs can be lost. It is assumed that the user will notice that no useful information is

gained from an incorrect scale and will adjust until correct operation is found. An example

of this can be seen in Figure 54 (Note the lack of clarity on the left image).

Figure 54: A 20 Hz sine wave is shown on the combined screen using (Left) a total time of 12 s (Right) a total time of

0.12 ms

The number of buffers stored for the graph page is calculated based on the length of the

buffers. It assumes a sample rate of 44.1 kHz, and so based on this will store 12 seconds

worth of buffers (or 44100 ∗ 12 = 529200 samples). Doing this allows the user to scale

in and out whilst retaining all the historical information to be displayed. As stated

previously, the oscilloscope only draws a set number of points, as 529200 points on-screen

would show no useful information. Therefore, the oscilloscope takes a sample every step

based on the scale. This means that at a full display of 12 seconds, the steps are every 2000

samples. At the smallest scale of 0.006 seconds, every point is drawn. Both of these

calculations result in 264 points being drawn.

The oscilloscope also needed to display lined up with the signal generated signals on the

combined screen. To do this, triggering needed to be implemented. The visible points

(chosen from the scale) as checked against the previous point, and if there is a negative

incline through zero, then the sample index is added to an array. If the triggering is active,

the median value from the array is selected as the offset. This triggering assumes a simple

lScale = (log(model.lFrequency) / log(10)).floor();

rScale = (log(model.rFrequency) / log(10)).floor();

avgScale = (lScale + rScale + 4).toDouble();

avgScale = zoomScales[avgScale.toInt()];

50 4 Design and Implementation

periodic wave with only one negative edge that crosses zero in each period. This helps to

keep the signal visible and aligns the oscilloscope with the signal generator graphs. A

demonstration of this in operation can be seen in Figure 55.

Figure 55: A demonstration of the triggering working for a signal generated wave

4.8.5 Save/Load Slots (Foivos)

Enabling the persistent storage of the configuration of the practical page parameters is

critical to ensure that users do not lose information when continuously using the

application. An additional use of save and load configurations is the ability to return to a

configuration of an experiment if the user could not complete it within a single session.

The “shared_preferences” Flutter plugin was used for the persistent storage of data.

“Shared_preferences” uses NsUserDefaults on iOS and SharedPreferences on Android to

store simple data on the local storage for the device.

Only the configuration parameters were stored when storing parameters, meaning no real-

time information was recorded (such as the oscilloscope buffers). This included the

frequency, amplitude, offset, wave type, and outputting variables for the signal generator.

For the oscilloscope, this included the triggering and frozen status.

Once the save/load button on the sidebar is pressed, an animated popup is displayed, as

shown in Figure 56. The popup contains three different slots with the buttons to save, load,

delete or get more information.

Figure 56: Save/load parameters popup with middle slot free

51 4 Design and Implementation

Free slots are also indicated and can be used so that a previous slot is not overwritten. As

shown in Figure 56, these slots indicate if they have information stored. It is also worth

mentioning that if a particular slot has not been saved to, the load, delete, and information

buttons act as placeholders serving no function. Additionally, whenever a slot is saved,

the date it was created, and its timestamp are displayed, allowing the user to have some

defining property directly available without clicking the information button. The full list

of stored parameters is seen if the information button is pressed.

4.8.5.1 Saving to a Slot (Foivos)

Figure 57: Confirmation dialogue for saving to a slot

If the user desires to save parameters on an empty slot, they can press the save button. If

the user wants to save on a slot that already has data, a confirmation dialogue will show,

as shown by Figure 57. Only on confirming the choice to save, will the slot be overwritten.

4.8.5.2 Deleting a Slot (Foivos)

The user can delete a slot if they think it is no longer needed. Once the delete button is

pressed, the user will be given a confirmation dialogue (same widget as the overwriting

pop up) to delete. The slot is only deleted upon confirmation in this popup. This is shown

in Figure 58.

Figure 58: Confirmation dialogue for deleting a slot

4.8.5.3 Information Popup (Foivos)

The user can view more information on a specific slot by selecting the information button

on a slot with information. This will show a popup displaying three separate tables of

information, as shown in Figure 59.

Figure 59: Information popup for the save/load slots

52 4 Design and Implementation

The first table contains all parameters relating to the signal generator. This includes the

frequency, amplitude, offset, and wave type for each channel. The bottom-left table shows

if the signals were outputting. The final table displays the two parameters for the

oscilloscope, triggering and frozen.

4.8.5.4 Default Configuration (Foivos)

When a user is continuously within the application, the persistent storage of their previous

configuration on the practical page is an important feature. This prevents the user from

exiting the practical page and losing their configuration for their running experiment.

Therefore, a default slot automatically stores previous configurations when the user exits

the practical page. This slot is restored when the user re-enters the practical page. This

was implemented to allow the user to explore other areas of the application, such as the

experiment instructions, without losing their configuration.

The default slot is deleted once the application is terminated. This slot is deleted when the

application is launched, meaning if the application is running in the background and

resumes, the information will not be deleted.

4.9 Application Navigation (Leonardo)

On Android devices, on both the Music Mixer and Logic and Arithmetic screens, if the

user presses the back button twice, a confirmation popup appears, shown in Figure 60. If

the user presses no, the popup closes without any action. If the user presses yes, the user

is redirected to the home screen. This implementation can only be used on Android as iOS

devices do not have back buttons. This is why there is also a home icon in the AppBar that

will return users to the home screen. This implementation is possible by using a

WillPopScope widget, which calls a function when the user pressed the back button. The

function checks how many times the button has been pressed before activating the popup.

The design of the popup is similar to the save and delete slot popup in the practical page.

Figure 60: Go home popup for kit pages

Android can use the navigation buttons to exit the practical page, while iOS users do not

have these buttons available. As a result, a floating exit button was implemented in the top

right of the practical page to allow iOS users to exit the page. This allows users of either

platform a quick way to leave the page by pressing this. This additional implementation

is still available for Android users, and the intention was to keep the user experience on

both platforms identical. The exit button can be seen in Figure 61.

Figure 61: Exit button on the practical page

53 4 Design and Implementation

4.10 Integration (Eamonn)

Throughout the project, the individual implementations were developed on their

respective branches on the project GitHub. Throughout the project, these separate

branches were used to merge and branch to avoid any combability issues integrating the

functionality. This integration also required some manual input due to merge errors or the

combination of different variables.

The most challenging integration process arrived after the initial development of native

features since these were developed on independent applications to aid in the speed of

debugging. After combining the individual components, each team member continued to

use their separate branches relating to a different functional implementation.

During integrating a new functional component, several critical reviews had to be made.

The first was the ability of the code to be read in combination with the already existing

code. This process was made easier by the user interface for merge conflicts on Visual

Studio Code which visually shows the differences and allows a simple selection of which

to keep (compared to command line merge conflict resolution).

When choosing the merge resolutions, the most significant consideration of the integration

was the consistency of naming variables. Since the project might be continued

professionally, it was essential to ensure the naming of variables were clear, so the code

was readable and consistent. Luckily, Flutter has some conventions for the naming of

classes compared to variables, and the ability to name private variables with an underscore

prepending the variable name to indicate the privacy. These rules are sometimes missed

when there is a quick debugging and developing cycle on the branch, so it was essential

to include these consistency checks at the time of integration.

 55

5 Testing (Eamonn)

5.1 Methodology (Eamonn)

Throughout the project, rudimentary testing was completed during the development phase

of the application. This allowed for rapid iterations and ensured that any bugs were found

and resolved as soon as possible. However, these preliminary tests did not have a high

accuracy level to determine the deterministic behaviour of the application. At the end of

the project, the application was thoroughly tested within a laboratory to ensure a known

full performance characteristic.

The building 16 laboratory on the campus of the University of Southampton was restricted

during testing due to Covid-19 restrictions. Despite this, it was still possible to produce a

full test suite to determine the performance difference on several devices. The tests were

performed in the same manner, independent of the team member carrying out the test was

crucial.

During testing, the laboratory oscilloscope was connected to the laboratory computer with

software to capture every result. Similarly, the oscilloscope was configured with the

current test measurements, and that test alone, ensuring the image contained only relevant

data. Any investigations that did not have a specific measurement in mind recorded as

many measurement characteristics as possible (relating to amplitude, frequency and

relative phase). Figure 62 shows the full testing set up (including a diagram of the

oscilloscope connections to the board).

Figure 62: Testing configuration using a Samsung S8

The testing involved trying to determine several factors about the performance of the

application. The first was how accurate the frequency behaved compared to the expected.

This process was repeated for the relative phase output, and then the amplitude. It was

also crucial to discover if different devices had different maximum amplitudes, so the

amplitude was tested in a matrix to ensure that each absolute value was determined.

Beyond these set values, a comparison of each devices performances at different

frequency ranges for certain wave types was tested, and then a test on adding different

waves of different frequencies and phases to determine correct behaviour.

56 5 Testing (Eamonn)

5.2 Android Results (Eamonn)

5.2.1 Samsung S8 Using an Auxiliary Cable (Eamonn)

Samsung S8 testing shows a strong performance of the application. The frequency tests

show high accuracy reporting an average error of just 0.66%. The highest recorded error

was 1.54%, and the lowest was 0%. The results can be seen in Figure 63.

Figure 63: Graph showing the target frequency compared to the recorded frequency using the auxiliary cable on a

Samsung S8

Similarly, the results for the phase difference support the argument that the application

has high accuracy. The differences recorded range from an error from 0.09° to 2.04°. The

average error is only 0.85%. The results can be seen in Figure 64.

Figure 64: Graph showing the target phase compared to the recorded phase using the auxiliary cable on a Samsung S8

The amplitude testing for the Samsung S8 shows an exponential trend on the devices

volume setting, with a linear trend using the amplitude slider included within the

application. These results were in line with what was expected. If the results were

57 5 Testing (Eamonn)

consistent with the rest of the tests completed on Android and iOS, the amplitude axis in

the application could be labelled. The amplitude for the Samsung S8 had a maximum

amplitude recorded by the laboratory oscilloscope of 2.24 V. The minimum recorded

amplitude was 20.8 mV. However, this is due to general noise on the oscilloscope, as no

measurement could be 0 V in reality. Figure 65 shows the amplitude values at different

“notches” of the phone volume.

Figure 65: Graphing showing recorded amplitudes for different phone and slider volumes on a Samsung S8

5.2.2 OnePlus One Using an Auxiliary Cable (Eamonn)

Figure 66: Graphing showing recorded amplitudes for different phone and slider volumes on a OnePlus One

The accuracy of the frequency and phase were tested to ensure similar characteristics.

However, the measurements were not recorded because the frequency and phase are

software limited. The maximum recorded amplitude was 2.76 V, and the minimum

recorded amplitude was 20.4 mV (but similar to the Samsung S8, this is due to noise on

the oscilloscope). These results are shown in Figure 66. These are different from the

Samsung S8 result and support the decision not to place a scale within the application.

58 5 Testing (Eamonn)

5.2.3 Samsung S8 Using Other Connections (Eamonn)

The Samsung S8 was used to test other connectors that could be used with the Music

Mixer board. The first one to be tested was a Bluetooth dongle. It only had the capability

to output audio, and therefore the ability to test the input was not possible.

The Bluetooth dongle had all the same characteristics as the auxiliary cable for outputting.

The absolute accuracy for frequency and phase was not measured, as it was assumed that

the accuracy would be software limited, and therefore could be determined by using the

auxiliary cable measurements.

The difference between the Bluetooth dongle and the auxiliary cable was that the

Bluetooth dongle had a DC offset applied. It also appeared that the absolute amplitude

maximum was different from the auxiliary cable, reaching only 1.72 V through the

Bluetooth dongle (with the DC offset removed).

Similarly, a USB-C-to-auxiliary cable was investigated, and the same conclusion was

drawn. The amplitude was not the same absolute measurement, reaching a maximum of

only 552 mV. This is supported in discussing the results found when testing the OnePlus

One (section 5.2.2).

5.3 iOS Results (Eamonn)

iOS testing followed the same methodology as the Android testing, meaning the

amplitude, phase and frequency were all tested for their accuracy and absolute values.

Unfortunately, due to only having an iPhone XS available for testing, there was no

possibility to test using an auxiliary cable. Only the lightning cable to auxiliary cable was

tested on iOS.

The frequency of iOS was similar to Android, with a minor average inaccuracy of 0.14%.

The maximum inaccuracy was 0.5% with a minimum of 0%. Based on these values, iOS

is more accurate than Android. The full results are shown in Figure 67.

Figure 67: Graph showing the target frequency compared to the recorded frequency for using the lightning to auxiliary

cable on an iPhone XS

59 5 Testing (Eamonn)

The phase recorded on iOS uncovered a bug in the code. Each output thread was initialised

at independent times; therefore, there was an offset on the phase difference between the

two waves. This means the raw values have an offset of 108.8° in the following results.

To allow for relevant analysis of the results, each recorded value had 108.8° subtracted

from it. With these corrected results, the phase had an average inaccuracy of 0.49%,

reaching a maximum of 2.16% and a minimum of 0%. The graph and values for the results

can be seen in Figure 68.

Figure 68: Graph showing the target phase compared to the recorded phase using the lightning to auxiliary cable on an

iPhone XS

The amplitude shown on iOS is different in absolute values to those on Android. The

maximum amplitude recorded was 2.72 V, and the minimum being 22 mV (due to noise).

The results can be seen in Figure 69.

Figure 69: Graph showing recorded amplitudes for different phone and slider options on an iPhone XS

60 5 Testing (Eamonn)

5.4 Other Notable Results (Eamonn)

5.4.1 Signal Generation (Eamonn)

Figure 70: Triangle wave being generated by a OnePlus One(Top) correctly at 2500 Hz

(Bottom) incorrectly at 250 Hz

Every device that was tested provided evidence that signal generation had different

performances on different devices. The different devices could not produce the same

quality signals that were not the fundamental sine waves at specific ranges. For example,

when using a OnePlus One, the generation of a square wave was significantly less accurate

than the Samsung S8 throughout the same range. In Figure 70 it is possible to see that at

61 5 Testing (Eamonn)

a frequency of 250 Hz, the performance of a square wave is not adequate on the OnePlus

One, whilst at a frequency of 2500 Hz, the OnePlus One can produce square waves with

no problems.

Figure 71: Triangle wave being generated by a Samsung S8 (Top) correctly at 2500 Hz

(Bottom) incorrectly at 5000 Hz

Similarly, on the Samsung S8, the same variance per frequency is found, with the triangle

waves being correct throughout most of the range, however at a frequency of 5000 Hz,

the peaks and troughs seem to round (seen in Figure 71).

62 5 Testing (Eamonn)

5.4.2 Microphone Detection and Processing (Eamonn)

During testing, both Android and iOS devices had problems connecting to the board in

the first instance. It was quickly discovered that phones have specific hardware

requirements to identify the auxiliary port lines to detect the hardware connected to it.

This is done so that the phone knows how to handle the connection (i.e., an input or an

output). The Android specification for detecting a microphone input to the phone is to

have a 100Ω resistance across the line to the GND pin. The impedance also should be

above 5kΩ to be detected as a line in [30]. iOS testing shows similar performance,

requiring an in-line attenuator for the microphone to be detected. This attenuator has the

resistances and impedances on the lines in order to prevent this issue.

5.4.3 Oscilloscope (Eamonn)

Figure 72: Constructive wave of 1260 Hz sine wave with a 440 Hz sine wave

(Top) on the application (Bottom) on the laboratory oscilloscope

These inaccuracies found in the signal generator do not seem to impact the operation of

the application relating to the oscilloscope and constructive waves. Several tests were

performed showing the application, the waves produced, the wave input and the laboratory

oscilloscope showing the same constructive wave. These can also be verified by eye as

the constructive waves chosen were straightforward. The most notable was using a 1260

Hz sine wave combined with a 440 Hz sine wave, with no phase offset (seen in Figure

72). Another excellent example of performance is shown in Figure 73, where a 440 Hz

sine wave was added to a 440 Hz triangle wave with a 180° phase difference.

63 5 Testing (Eamonn)

Figure 73: Constructive wave of 440 Hz sine wave with a 3430 Hz square wave with a 180° phase offset

(Top) on the application (Bottom) on the laboratory oscilloscope

5.5 A-level Teachers Feedback (Eamonn)

5.5.1 First Survey (Eamonn)

The first questionnaire received 13 total responses. These responses gave a strong

rationale for the project and raised some additional improvements that could be made to

the hardware of the board. The additional comments were all out of the scope of this

project; however, included statements with the general sentiment that more flexibility with

the board would be beneficial (such as the ability to add a 5th LED to the Planck’s constant

section of the board quickly). A graphical display of the results can be seen in Figure 74.

5.5.2 Second Survey (Eamonn)

The second questionnaire received a total of eight responses relating to the

understandability of the first iteration of the design of the project. Only 12.5% of teachers

disagreed that the design was not cluttered on the oscilloscope page. Most of the responses

indicated that the application was easy to understand, with no teachers thinking the

combined application screen was cluttered, poorly thought out, or confusing to students.

More specifically, 62.5% of teachers asked agreed that it was clear how the combined

screen, would work, with a further 12.5% of teachers strongly agreeing. Similarly, five

out of eight teachers agreed or strongly agreed that students would understand the design

64 5 Testing (Eamonn)

with 50% agreeing or strongly agreeing that students would easily interact with the more

complicated features. A graph of these results can be seen in Figure 75.

5.5.3 Third Survey (Eamonn)

The final questionnaire was like the second questionnaire and was used to understand if

the application had been designed to a good standard. Unfortunately, due to the timing of

this survey and the complications with teachers work this year, there were only three total

responses. This means concluding these results would be disingenuous as to make

statements about the final design of the application. Nevertheless, the few results collected

can be seen in Figure 76.

65 5 Testing (Eamonn)

Figure 74: First survey responses

66 5 Testing (Eamonn)

Figure 75: Second survey results

67 5 Testing (Eamonn)

Figure 76: Third survey results

 69

6 Final Outputs (Gavin)

6.1 Application (Eamonn)

Relating to the specification defined in 3, the project completed all the core requirements,

including implementing a signal generator and oscilloscope at a sample rate of 44.1 kHz,

save/load implementation and instructions for the material found on the Electronics

Everywhere webpage. The application has also explored stretch features (mentioned in

3.1.2) with features such as the interactive image, information about the Logic and

Arithmetic kit, and the Logic and Arithmetic instructions. Additionally, the other stretch

features have been researched and are discussed in some of the handover resources

discussed in 6.2.

6.2 Handover Resources (Gavin)

In addition to producing the application, supporting resources were also created. These

resources were created to aid a future team picking up the project where it was left off.

6.2.1 Handover Document (Gavin)

The handover document contains the information required for a new team to continue this

project with all the insights from the current team. The document contains an introduction

to the project, a list of implemented features, and known bugs. The handover document

also discusses potential fixes to these bugs and a list of suggestions for further

implementation (including explanations of how these might be achieved). Some of the

content overlaps with section 9, with recommended features outlined and discussed. The

discussion also includes ideas of the design and how the features might be implemented.

The handover document can be found in appendix I.

6.2.2 Instructional Video (Gavin)

An instructional video was created that walks through the application, demonstrating the

features [31]. This could potentially be used as part of the supporting content for the

release of this application. This video is six minutes long, describing the features found in

the application and their intended uses.

6.2.3 Written Instructions (Gavin)

To accompany the instructional video, a set of written instructions have been produced.

These could be used as part of the supporting content for the release of this application

after some branding has been added. An information leaflet is currently packaged with the

Music Mixer kit, and a similar style could be applied to these application instructions. The

document is an infographic with diagrams explaining the use of the application with

images, which can be seen in appendix G.

6.2.4 Music Mixer Laboratory Experiment Instructions (Gavin)

The University of Southampton has produced some laboratory notes that contain

experiments that can be run with the Music Mixer board. These were created before

developing this application, and so have references to third-party applications. They also

include references to external hardware, which can now be replaced with the Electronics

Everywhere Application. Section “2.2 Potential Dividers (AC)” and additional section

70 6 Final Outputs (Gavin)

“2.3 Music Mixing” have been edited to ensure that they can be read and used alongside

the application. These new laboratory notes could either replace or accompany the existing

laboratory notes for running experiments and can be seen in F.

6.2.5 Stock Images (Gavin)

Within the project archive is a range of images taken of the Music Mixer kit working with

the application in different scenarios. The idea of these images is to allow them to be used

for promotional materials. They are used within the application. Some photos were taken

with the purpose of promotion, so the aesthetics were prioritised, with other photos taken

to demonstrate the use of the application. The photos promote the application and or the

kits, either demonstrating use or as eye-catching content, and some highlights can be seen

in appendix G.

6.3 Surveys (Eamonn)
As will be discussed in 7.2, several surveys were sent to teachers to understand one of the

end-users insights into the project throughout the project. These surveys came in the form

of an initial survey to gauge the requirements of A-level physics teachers. In the middle

of the project, a second questionnaire was sent, asking for feedback on the intermediate

design of the project, and if it was good. Finally, a third survey was sent, which assessed

how the final product was viewed by teachers.

6.4 Testing Documents (Eamonn)

At the end of the project, a thorough test suite was run on the project (previously discussed

in 5). These results were recorded in an excel document, and images of each result were

saved to the project archive. These results helped to inform the characteristics of the

application running, and have been put in the project archive so that the team following

can use the results in their design decisions.

 71

7 Project Management (Eamonn)

7.1 Division of Responsibilities and Project Planning (Eamonn)

7.1.1 Initial Plan (Eamonn)

As discussed in 3, the initial specification was developed from the brief and discussions

with the external partner. From this specification, the initial division of tasks was devised.

At the start of the project, the duties were split into different functional implementations

that could be completed independently.

These independent tasks were then made into a Gantt chart. The most crucial components

were placed at the beginning of the project to avoid a problem in development from

causing cascading issues. The natural division of time in the project aligned with the

academic hand-ins, involving three time periods named sprints.

The first sprint started with the academic year (5th October 2020) and lasted three weeks

until the first presentation deadline (23rd October 2020). This sprint focused on the project

brief, background research and development of the native implementations which handled

the input and output interface on the different platforms.

The second sprint came after the first presentation (23rd October 2020) and lasted four

weeks until second presentation (20th November 2020), involved integrating the individual

native components to work together on one application and ensure a common GUI

theming use throughout the project.

The third and final sprint was between the second presentation (20th November 2020) and

the Christmas holidays (11th December 2020), lasting three weeks. This focused on

bringing together the technical project, intending to combine all the user interface

discussed as either stretch goals or additional features beyond the core.

These sprints were placed into an initial Gantt chart shown in Figure 77.

72 7 Project Management (Eamonn)

Figure 77: Initial Gantt chart with the sprints labelled

73 7 Project Management (Eamonn)

Since the project naturally had these divisions of time, it was decided that the ownership

of each task would be agreed at the start of each sprint. If there were issues, they could be

raised in the Weekly Operational Review (WOR), which occurred every Monday at 12:00-

1:00 PM.

7.1.2 Initial Division of Roles (Eamonn)

During the first team meeting, it was clear that a team structure was required. As a result,

it was decided that Eamonn Trim would be the project manager. The division of roles

appeared to be quite natural for the first sprint, four group members being on the Electrical

and Electronic Engineering degree, and the remaining member being on the Computer

Science degree.

The project manager role included everything from handling the administration of

meetings, contacting the client and supervisor, creating the Gantt charts, ensuring the team

stayed on track, and managing the team members. As a result, there were no roles given

for secretary or financial manager, as these were to be handled by the project manager,

who agreed the administrative tasks would take precedent over the technical ones.

For the first sprint, the plan was the team members doing engineering would work on the

hardware interface, whilst the computer scientist would work on the start of the software

side of the project, including the basics of the user interface. The second sprint focused on

designing and implementing the core user interface of the application. As a result, all the

team members were expected to input the direction the user interface should take. After

this core user interface scaffold, the final sprint was dedicated to adding the missing

functionality, such as user experience features on the practical page, and adding an

interactive image page to engage students in some background knowledge. These final

tasks were assigned based on the strength and weaknesses matrix (discussed further in

7.5.1) when the team members reached the final sprint; however, as will be discussed in

7.1.4, this did not happen.

Relating to the Gantt chart tasks, Table 5 shows the tasks from the first sprint assigned to

each team member at the start of the project.

Table 5: Initial division of tasks

Team Member Tasks

Eamonn Project manager, signal generator (Android), Android testing

Gavin Oscilloscope (Android)

Leonardo User interface lead for application

Foivos Signal generator (iOS), iOS testing

Adel Oscilloscope (iOS)

7.1.3 Actual Execution (Eamonn)

The project mostly adhered to the sprint plans each team member completing one task at

a time (allowing for five concurrent tasks at once). The actual assignments completed in

the Gantt chart can be seen in Figure 78.

74 7 Project Management (Eamonn)

Figure 78: Actual Gantt chart execution

75 7 Project Management (Eamonn)

One of the most significant changes that required moving the most was moving the testing

from the start of the project to the end. This was because some of the native

implementations planned for the beginning of the project continued to prove challenging

to implement completely without bugs. Since testing results would be used to report and

conclude how well the application operates, this task was postponed until the native

implementations had been thoroughly reviewed to remove as many bugs as possible.

Another task which overran was the interactive image for each board. This was due to

both complexities of the undertaking and a lack of communication between some team

members. Once the task requirement had been reiterated, the responsible team member

could complete the implementation to a substantial standard in the time frame required.

Internal communication is the area in which the team struggled with the most, as many

project decisions were decided in the WOR, not any other times.

Another common issue was that the team members would sometimes miss meetings or

turn up late to meetings despite not giving a reason beforehand. This caused some of the

meetings to be delayed and overrunning. It also meant that another meeting would have

to be scheduled to ensure that all the group members opinions were being considered in

the decisions of the project. Luckily, the feature to record meetings was commonly used,

meaning that the late or missing members could catch up on what was missed to help

improve the speed of recovering the time lost. The total number of recorded times team

members were late or missed meetings reached 23.

Despite these two issues in the team dynamic, the team still managed this time well. The

Gantt chart planning was adhered to even whilst handling additional documentation and

other requirements for other modules (or administrative tasks such as presentations or

meetings) taking the focus for specific weeks.

7.1.4 Actual Division of Roles (Eamonn)

Much like the Gantt chart, the division of roles was not allocated quite precisely as they

had initially been planned. With the project moving forward and the were some issues

with some of the tasks. This was due to some team members struggling where others did

not, and the best course of action was to reassign the team members to tasks that might

have better suited their skill set. During the first sprint of the project, there were some

issues in developing iOS microphone detection. Therefore, the task was reallocated from

Adel to Foivos, who had some coding experience for iOS through the signal generator

implementation. Therefore, Adel was tasked with producing some designs and ideas for

the practical page implementation. However, the final design was heavily impacted by the

inputs from the rest of the group, predominantly from Gavin and Eamonn.

The second sprint began with the team discussing the user interface of the practical page

and how to align the other areas of the application. This process happened quickly and

allowed the team to continue with implementation ahead of schedule. However, the iOS

implementation was slightly behind, as the troubles stated above delayed the execution.

As a result, Foivos continued on the back end of the iOS, with the other members moving

forwards onto the front end. Leonardo continued to work on the application structure, the

exercise pages and implementing changes based on feedback from the rest of the team.

Gavin worked with Eamonn on implementing the user interface for the practical page,

splitting the tasks for the user interaction and the graphing respectively. Adel started work

76 7 Project Management (Eamonn)

on the interactive image page due to the positively stated creativity written on the strengths

and weaknesses.

For the final sprint, these tasks mostly stayed the same. However, each section of the

application went through an iterative transformation, as each team member focused on

getting the application themed using the UKESF colour scheme and branding. Foivos,

who had completed the back-end integration, was able to work on the backend for the

save/load slots, as well as the user interface for this feature.

Regarding who was responsible for each technical task, each team member wrote about

in this document relate directly to their technical responsibilities. For instance, Foivos

worked on the iOS backend of the oscilloscope and signal generator, and the save/load

implementation. Eamonn created the backend for Android signal generation and the Music

Mixer practical page graphing capabilities, alongside managing and organising the team.

Gavin provided the GUI for the Music Mixer practical page and the Android oscilloscope

backend. Leonardo was responsible for the general theming for the project, including the

home page, about page and exercises. Adel worked on the interactive image for both the

Music Mixer and the Logic and Arithmetic boards.

Beyond the final technical implementation, the team also worked on additional

documentation, mostly managed by Eamonn and Gavin, who worked on the handover

documentation. Eamonn and Foivos worked on the hardware testing, which provided

crucial feedback for this handover documentation. Leonardo offered useful insight into

the user interface side of the application and the direction it should be taken after the

handover of the project. Adel continued to work on the implementation of the interactive

image, overrunning the third sprint.

Table 6: Division of tasks relating to the group presentation

Responsible Team Member Slide Number and Title

Eamonn 1. Introduction Slide

4. Project Planning

5. Specification

6. Project Plan

7. Planned Gantt Chart

8. Actual Gantt Chart

15. Dynamic Graphing

21. Thanks and Questions

Gavin 12. Native Implementations (shared with Foivos)

14. practical page

16. Application Theming and UI Design

17. Continuous Testing

Leonardo 10. Model View Controller

11. Current Implementations

13. Main Page and Lab Instructions

Foivos 2. Project Overview

3. Use Cases

12. Native Implementations (shared with Gavin)

20. Summary

Adel 9. Tool Overview

18. Interactive Image

19. Future Work

77 7 Project Management (Eamonn)

The most recent task was to complete the academic hand-ins for the end of the project.

Three main hand-ins need to be completed: This document, a group presentation and a

group poster. Before each section written in this report, the title includes the name of the

author in brackets. Table 6 represents the division of tasks relating to the group

presentation and who is responsible for presenting the slides. The group poster was created

and edited by Gavin and Eamonn. Eamonn handled the final edit of the hand-ins to provide

a consistent tone.

7.2 Ethical Approval and Planning of Questionnaires (Eamonn)

7.2.1 Initial Rationale and Planning (Eamonn)

A suggestion to engage with A-level physics teachers was given at the beginning of the

project. Feeling it might add some useful insight into the direction of the project, and

perhaps reveal some thinking about the project that the team perhaps did not consider, the

decision was taken to proceed with questionnaires.

Three questionnaires were planned. The initial one was to gauge the current impact of not

having enough equipment in A-level physics classes and the effect on students. It also

allowed teachers to input what they might find useful in terms of a companion application

or changes to the hardware.

The second questionnaire involved consideration of the design of the application at the

mid-way point in the project. This was really to understand if by looking at a silent

demonstration video of the layout of the application, teachers could grasp how it would

be used, as the user interfaces for the signal generator or oscilloscope might be a little

confusing.

The final questionnaire was much like the second questionnaire. However, it involved a

silent walkthrough of the entire application and requested teachers to review if the updated

design was still understandable or required changes. It was also aimed at understanding if

teachers would be willing to use the application as it were in a classroom.

An ethical approval form was created through the University of Southampton’s ERGO

board to ensure that these questionnaires could be used within the context of this project.

This took a few iterations and meant that the questionnaires were created at the start of the

project. Some of the latter questionnaires had quite vague questions to capture the general

feeling of the application since the specifics were not known at the time. As the

questionnaires are anonymous, and the information collected within them do not relate to

any personal details, the results can be kept within the project archive. The full ethical

approval forms can be found in the project archive.

7.2.2 Evaluation of Usefulness (Eamonn)

These questionnaires ended up being incredibly useful, but mainly for retroactive

confirmation that the decisions made were in line with the opinions of A-level physics

teachers (one of the end-users of the application). If, however, the project was to be

repeated, these questionnaires would be done slightly different.

Firstly, the content within the questionnaires would have been more specific, with a keen

interest in the advice of the direction the project could be heading in, rather than a

retroactive look at what has been made. This would have involved requiring a team

78 7 Project Management (Eamonn)

member to handle updating the ethical approval through amendments and extensions to

include these new questionnaires. Due to the quality of the feedback to inform the progress

of the project, this would be worth the time that would be taken away from the technical

side of the project.

Secondly, these questionnaires would have also aimed to retrieve more open feedback

about suggestions for changes, rather than a simple evaluation of whether the application

was good or bad. In the case of this project, it was helpful to know that the project was on

track to please the end-users retroactively. However, there was not a high level of

engagement. Perhaps knowing that there was no input in the long term success of this

application, the teachers asked may not have put as much time or effort into the

questionnaires as they might have if they had known that their responses had a substantial

impact on the direction of the project.

7.3 Planning and Tools (Eamonn)

7.3.1 Version Control System (Eamonn)

The Version Control System used was GitHub, but more specifically, the University of

Southampton GitLab. This was extremely useful to ensure that there were no possibilities

of scope issues for members outside of the university from seeing the project and

providing no intellectual property issues.

It was also advantageous to retrospectively see the progress on the project and the work

put into each development area. Figure 79 is taken from a tool called GMaster [32], which

allows a graphical representation of the version control, displaying the different branches

and how they were merged for the project. Figure 79 is only a brief overview of the branch

history without the intention of viewing any detail. A complete branch and commit history

being displayed in appendix C.

Figure 79: Overview of the GitHub branch history for the project, taken with GMaster [32]

The use of these branches meant that the team members could work on their respective

features and prevent any discarding of another team members implementation if the task

involved working on the same part of the code concurrently. Instead, using VCS tools to

compare the differences between the merge versions and select the most relevant changes

allowed the project to be combined and integrated without much hassle rapidly.

The process of using a VCS is absolutely one that would be repeated if the project were

repeated. Combining a useful tool for reflecting on work done and smoothly integrating

the implementations from different members with minimal effort is worthwhile. However,

the difference would be using a Continuous Integration (CI) tool to allow the VCS tool to

automatically generate application files on the push of each version. This would have

qualified to potentially get the application rolled out to application stores for user

feedback; however, implementing this in the short time given might have been slightly

out of scope.

79 7 Project Management (Eamonn)

7.4 Risk Management (Eamonn)

7.4.1 Initial Risk Assessment (Eamonn)

At the start of the project, a risk assessment took place, which involved trying to plan for

all of the risks that could slow the project. These potential risks were given an impact

rating (a scale between 0 to 10) and a probability (a scale between 0 to 1). Together, these

could be used to estimate the risk rating. Each risk was given a response that would

mitigate the risk and avoid the potential damage it would cause the project.

An example of one of the risks considered was the impact of Covid-19 on the project.

Figure 80 shows how this had a medium impact and a reasonably high probability, and as

a result, the actual risk was relatively high. The mitigating task would be the action to take

should the risk occur. A full list of the risks can be seen in appendix D.

Figure 80: Example of how the risk assessment was created, using lockdown due to Covid-19 as an example

7.4.2 Actual Risks Mitigated (Eamonn)

During the project, only a few of these risks occurred that might have impacted the project.

The risks that occurred can be seen in Table 7.

Table 7: The risks that occurred during the project

ID Risk Hazard

P1 One of the group members travels to a

different country

Impossible for all member to meet face-

to-face making it harder to discuss topics

P2 One of the group members goes out of

Southampton

Unlikely for all members to meet up

face-to-face making it harder to discuss

topics

P3 Work from other modules is hard to

manage

Harder to complete tasks assigned with

much work from other modules

E2 Ethics application takes longer than

expected to be accepted.

Feedback from teachers is received late

resulting in possible project delays

E3 Cannot make a booking to meet up in

person

Cannot discuss topics in person may

make it harder to understand information

E4 There is a second UK lockdown due to

Covid-19 during the project

Cannot meet in person to discuss topics.

Increased stress staying in lockdown

E5 Cannot meet up face to face with the

client

Harder to understand what the client

wants

80 7 Project Management (Eamonn)

P1, P2, E3, and E5 were caused because of the same factors; therefore, the solution was

the same for all three. Meetings from the start of the project were planned online, though

Microsoft Teams and little work needed to be carried out in person. It also helped that a

couple of team members bubble together, which meant that the small in-person work could

be done in a team. The laboratory tasks were also carried out as usual, as the hardware

supplied was enough to split between the team to test independently.

P3 only occurred towards the end of the project, since this is when most of the other

courses have their deadlines for coursework. The mitigating factor involved managing the

team well by ensuring good communication of when deadlines were. This allowed

informed decisions to be made about the amount of work to be undertaken from week to

week.

E2 impacted the project near the beginning. The initial survey needed to be sent as soon

as possible since it was the basis for many of the decisions for the project. The ethical

approval process took longer than expected and caused this information to be returned

later than expected. Luckily, the data was just as useful in hindsight as it would have been

before starting the project. The initial development included only the hardware interfacing,

so the feedback could still be used in to design the user interface features.

E4 occurred for four weeks between the 4th November until the 5th of December. Luckily,

due to the mitigating circumstances from P1, P2, E3, and E5, much of the communication

remained unchanged during this period. The team members in a bubble were also still

allowed to continue to do so during the lockdown period. The uncertainty of the university

laboratories closing prompted by this risk was a useful motivator to complete testing early.

81 7 Project Management (Eamonn)

7.5 Strengths and Weaknesses Matrix (Eamonn)

7.5.1 Initial Strengths and Weaknesses (Eamonn)

Figure 81: Initial strengths and weakness matrix

At the start of the project, to ensure that the team could assign tasks relating to their

strengths and weakness, a complete matrix of the team members’ capabilities was created.

The full matrix of the responses given can be seen in Figure 81. Note: Dart Coding has

been filled out with 0 as the team had yet to choose Flutter as their tool.

The most notable aspect of the group strengths and weaknesses includes a team average

of 6.68, indicating an overall strongly performing group. The team had a general lack of

strengths in research, legal knowledge, and Swift coding.

7.5.2 Strengths and Weaknesses After Project (Eamonn)

Throughout the project, the team members were able to work on different aspects of their

strengths and weaknesses. The team filled out the strengths and weaknesses matrix at the

end of the project, without reference to the original. These responses can be seen in Figure

82.

The differences between this matrix and the initial one show that the team have increased

their average from 6.68 to 6.88. This shows how each team member has improved their

skillset throughout the project. The most remarkable individual improvement was Gavin,

who was able to increase an average of 1.17 points. The team also seemed to become more

aligned with their skills, noting that the team variance fell from 3.3 to 2.5. Unfortunately,

Eamonn Gavin Adel Leo Foivos

Leadership 10 9 7 5 7 7.60 5 10 Eamonn

General Management 9 9 5 8 6 7.40 4 9 Eamonn, Gavin

Time Management 8 7 5 7 8 7.00 3 8 Eamonn, Foivos

Research 5 3 5 5 5 4.60 2 5 Eamonn, Adel, Leo, Foivos

Creativity 7 3 10 8 7 7.00 7 10 Adel

Report Writing 7 6 4 7 8 6.40 4 8 Foivos

Report Formatting 8 5 4 7 9 6.60 5 9 Foivos

Conscientious 7 9 8 8 8 8.00 2 9 Gavin

Social Awareness 8 9 7 7 8 7.80 2 9 Gavin

General Analysis 7 7 8 6 7 7.00 2 8 Adel

Data Analysis 5 6 8 5 7 6.20 3 8 Adel

Strategical 8 6 10 6 7 7.40 4 10 Adel

Legal Knowledge 3 3 3 7 3 3.80 4 7 Leo

Reasoning 7 7 8 7 7 7.20 1 8 Adel

Teamwork 8 6 7 7 6 6.80 2 8 Eamonn

Adaptability 8 5 7 8 7 7.00 3 8 Eamonn, Leo

Practical 7 8 5 6 6 6.40 3 8 Gavin

Resourceful 6 6 8 5 5 6.00 3 8 Adel

Sociable 7 9 7 7 6 7.20 3 9 Gavin

Inventive 7 4 8 5 7 6.20 4 8 Adel

C / C++ Coding 6 6 8 3 8 6.20 5 8 Adel, Foivos

Javascript Coding 8 2 2 6 8 5.20 6 8 Eamonn, Foivos

Java Coding 9 2 2 9 2 4.80 7 9 Eamonn, Leo

Hardware Design 6 8 6 1 1 4.40 7 8 Gavin

Hardware Interfacing 5 8 5 1 6 5.00 7 8 Gavin

App Design 7 6 7 8 7 7.00 2 8 Leo

GUI Design 8 8 6 9 9 8.00 3 9 Leo, Foivos

Dart Coding 0 0 0 0 0 0.00 0 0

Swift Coding 4 2 2 4 3 3.00 2 4 Eamonn, Leo

Individual Average 7.074074 5.827586 5.931034 5.931034 6.481481 6.68 3.30 8.35

Eamonn Gavin Adel Leo Fivos Average Average Average

Top PeopleSkill
Team Members & Skill Rating /10 Team

Average

Team

Variance

Top

Score

82 7 Project Management (Eamonn)

the top scope average of the team also fell from 8.35 to 8.20. This is still remarkably high

and shows just how strongly the team performed throughout the project, with the initial

strengths chart already showing a strong team to begin, improving on that shows the

commitment and dedication of the team to the project.

Figure 82: Final strengths and weaknesses matrix

7.6 Achievements and Results (Eamonn)

Considering the planning at the start of the project, with the Gantt chart, the choice of

tools and the specification decided compared to the actual Gantt chart, the effectiveness

of these tools, and the completion of all core specifications have managed an outstanding

achievement.

The ability to implement the hardware interfacing on both iOS and Android applications,

whilst continuing to consider the user interface, through branding and end-user experience

viewpoints has allowed the project to produce an application has a few bugs and looks

professional.

On top of the core technical features and implementations, the team also produced

supporting documentation in professional presentations, videos, images and further plans.

These additional documentations were created to provide the team who will be continuing

work on the implementation to understand the teams’ vision with the application. They

also aim to guide the takeover team in research areas that had already been done to avoid

lost time in retracing the steps of the original group.

Eamonn Gavin Adel Leo Foivos

Leadership 10 9 6 6 6 7.40 4 10 Eamonn

General Management 9 9 6 8 8 8.00 3 9 Eamonn, Gavin

Time Management 9 8 6 8 7 7.60 3 9 Eamonn

Research 7 6 7 7 6 6.60 1 7 Eamonn, Adel, Leo

Creativity 5 5 7 8 6 6.20 3 8 Leo

Report Writing 7 6 4 7 8 6.40 4 8 Foivos

Report Formatting 8 6 4 7 8 6.60 4 8 Eamonn, Foivos

Conscientious 7 9 6 8 6 7.20 3 9 Gavin

Social Awareness 7 9 7 7 7 7.40 2 9 Gavin

General Analysis 7 7 7 7 8 7.20 1 8 Foivos

Data Analysis 6 6 7 5 8 6.40 3 8 Foivos

Strategical 8 9 8 7 7 7.80 2 9 Gavin

Legal Knowledge 3 3 5 5 3 3.80 2 5 Adel, Leo

Reasoning 8 8 8 8 7 7.80 1 8 Eamonn, Gavin, Adel, Leo

Teamwork 8 7 6 7 6 6.80 2 8 Eamonn

Adaptability 8 7 7 8 8 7.60 1 8 Eamonn, Leo, Foivos

Practical 7 9 6 5 9 7.20 4 9 Gavin, Foivos

Resourceful 6 6 6 7 5 6.00 2 7 Leo

Sociable 6 9 6 6 6 6.60 3 9 Gavin

Inventive 7 7 7 8 6 7.00 2 8 Leo

C / C++ Coding 6 6 8 5 8 6.60 3 8 Adel, Foivos

Javascript Coding 8 3 3 7 6 5.40 5 8 Eamonn

Java Coding 9 5 3 9 3 5.80 6 9 Eamonn, Leo

Hardware Design 6 8 5 3 7 5.80 5 8 Gavin

Hardware Interfacing 8 9 5 3 9 6.80 6 9 Gavin, Foivos

App Design 8 8 7 8 8 7.80 1 8 Eamonn, Gavin, Leo, Foivos

GUI Design 8 8 7 9 8 8.00 2 9 Leo

Dart Coding 8 7 7 8 8 7.60 1 8 Eamonn, Leo, Foivos

Swift Coding 5 4 3 3 6 4.20 3 6 Foivos

Individual Average 7.206897 7 6 6.689655 6.814815 6.88 2.50 8.20

Eamonn Gavin Adel Leo Fivos Average Average Average

Top PeopleSkill
Team Members & Skill Rating /10 Team

Average

Team

Variance

Top

Score

83 7 Project Management (Eamonn)

In addition to all of this, Stewart Edmondson of the UKESF (the client of the project),

gave feedback on the project. In terms of the approach, he stated, “the approach showed

good [innovation], the execution was done really well, and the design solution was

cleverly thought through.” Relating to technical work Stewart was “impressed by the

professional approach”, stating that he “was very pleased with the outcome, which showed

that the group understood both the context and the design brief.” In terms of

communication and negotiation, Stew thought the group “provided excellent weekly

updates” with “overall, communication [being] a strength.” Stewart thought “a lot has

been achieved in a short space of time” being “particularly pleased with the Group’s

(positive) response to the comments and feedback on their initial design brief”, stating “it

was really good to see our comments being acknowledged and acted upon.” Commenting

on the group, Stewart thought “the group were really well-motivated and very organised;

they seemed to work well together.” Stewart's thoughts are that the project is “worthy of

being used” as it has “met all major goals”. The originally formatted feedback can be seen

in appendix E.

 85

8 Conclusion

8.1 Specification (Eamonn)

According to the initial specification discussed in 3, the following points have been

complete:

• Visualisation of an input signal from the microphone

- 44.1kHz sample rate at 16-bit resolution

- Ability to change the scale, relative phase to the generated signals and auto set

With the Music Mixer practical page operating using a 44.1 kHz 16-bit PCM for iOS and

Android, with the ability to trigger and have the signal generator graphs change scale

based on the signal generated, all these points have been completed.

• Signal generator through the audio port

- A maximum of 44.1kHz maximum voltages is 2V peak-to-peak at a 16-bit resolution at loads

of 100-600 Ohms impedance

- Two individual mono-channel signals on the left and right audio channel

- Sine, square, triangle waves, music samples as default options

- Ability to change the amplitude, relative phase, frequency

- Can be individually turned off and on (if both are off, then music can be played)

- To be directly visualisable alongside the input signal from the microphone

With the Music Mixer practical page able to produce two independent signals that can

play sine square or triangle waves with relative phase differences, between 20-5000 Hz at

different amplitudes the top four points have been satisfied. The practical page allows the

signal generator graphs to be displayed alongside the microphone input, and if the signals

are off, music can be played out of the auxiliary port.

• Instruction sets for experiments

- Targeted at students to follow (enabling simple lesson plans for teachers)

- Covers all the material already available on the webpages

- Provides contextual background knowledge and theory about the experiment

With instructions taken from the web page for both the Music Mixer and Logic and

Arithmetic kits each with an introduction page explaining the purpose of the exercise,

these points have been satisfied.

• User interface

- Targeted primarily at students to use, but also with teachers in mind

- Links to UKESF & University of Southampton tools

- Branding and colour scheme matching UKESF and Electronics Everywhere

- Focusing on functional features to support experiments, without too many additional to avoid

an overwhelming interface

- Save/load slots to retain specific configurations

The theming of the application has focused on the UKESF colour scheme, with links to

additional information for both UKESF and the University of Southampton. The practical

page is simple enough for students to understand (demonstrated in the survey responses)

and allows the user to save and load configurations for different exercises.

86 8 Conclusion

There were some of the stretch goals implemented into the application; these included the

following:

• User interface

- Pinch zooms and edits for signals

- Interactive pictures of boards to give information about the operation

- Addition instructional tasks to produce certain output signals (within tolerances) based on

changing the circuit/signal configuration (providing the more adept students with a chance to

explore the more difficult application of physics, i.e. using these two output signals, and using

the board, produce a signal that is a mix of the first two)

The pinch zooms were not implemented. However, the ability to edit signals accurately

was added with a text input. The interactive pictures of the boards with additional

information on background theory and operation. The instructions included in the

application have a step-by-step format; however, do not check for any output signals.

• Logic analyser

- Information on the board included within the application

- Instructions for the experiments on the logic analyser found on the website

- Produce a technical plan for implementing a logic analyser with the application (including

hardware if required)

The first two points have been completed with the inclusion of the interactive image and

the Logic and Arithmetic kit exercises. The technical plan for implementing a logic

analyser with the application was discussed in the handover documentation.

8.2 Concluding Discussion (Foivos)

This project has successfully demonstrated the design, implementation and testing of a

cross-platform signal generator and oscilloscope application referred to as “Electronics

Everywhere Application”. Following the specification referenced in 3, the project has

successfully produced all the core features and some stretch goals. Using Flutter, a

software development library created by Google, combined with native iOS and Android

code, the signal generator and oscilloscope functionality were implemented.

This application has a target audience of A-level physics and computer science students,

along with teachers. The primary use case of the application is to be used alongside the

already developed UKESF Electronics Everywhere kits. The application included

branding and colour schemes from the UKESF; something the client stressed was a crucial

part of the project.

The supporting content surrounding the kits, such as the experiments found online, was

added to the application as interactive instructions. To support the exploration of the kits

and the contributing bodies, all relevant Electronics Everywhere and University of

Southampton links are referenced in the application. Each kit also features an interactive

image, allowing students to familiarize themselves with the boards and learn about the

electronic concepts included on them.

The client requested an application that was more polished rather than filled with buggy

features at the end of development. The team ensured that the core features were

implemented without bugs. Some stretch features that could not be implemented in a bug-

free state within the time frame are explored and discussed in 9.

87 8 Conclusion

Some handover resources were created that includes not only further work but also

promotional materials, tutorials, walkthroughs, edited content, and results from the

surveys and testing. This documentation is crucial to the team continuing the project to

understand the work already done and avoid repeating the same work.

The applications performance was tested at the end of the project. The results found that

on both Android and iOS, the margin of error was on average below 1%. The testing

justified the decision not to include an amplitude measurement on the y-axis of the

practical page, as there is no way to determine the amplitude of the output values.

Similarly, the input amplitude can also vary depending on the hardware connected. These

tests proved the application was ready for use, with the additional requirement of an in-

line attenuator.

Throughout the project, A-level teachers helped to provide feedback on the justification

for the project and input crucial feedback on the design process. The general feedback

involved discussion that A-level classes had limited access to oscilloscope and signal

generators, so an application that could emulate these features would be beneficial. The

intermediate solution design had positive feedback, stating that 93% of teachers either

agreed or strongly agreed that students would use the application. The final survey only

received three total responses, and so the results are not included as they would not provide

a genuine discussion of the application.

The client has stated they were impressed with the project overall, both in the approach

and the achievements. The project was “very organised” with “communication [being] a

strength”. The group “understood both the context and the design brief” in the view of the

client, with the approach showing “good [innovation]”. The client believes the application

is “worthy of being used” having met “all major goals”.

The project was managed successfully, with potential risks mapped out in a risk matrix

and assigned roles according to individual strengths and weaknesses. The initial Gantt

chart was mostly adhered to, with only a couple of tasks overrunning or being rescheduled

to accommodate the new timeline. With productive Weekly Operation Review meetings,

the team completed the specification on time and professionally, even managing to hand

over additional documentation.

This report was written with Microsoft Word, reporting a word count of 24696 (starting

from the title of 1, until the final word before 10).

 89

9 Further Work (Gavin)

Some additional features were investigated and discussed during the project but were not

implemented due to timing constraints. This section discusses these features with initial

designs, considerations, and descriptions of potential implementations.

9.1 practical page Tutorial (Gavin)
There are instructions, both written and in video format demonstrating how to use the

application, but this is not currently embedded within the application. The practical page

is the most complex, and feature-full section, so might benefit from an embedded tutorial.

The instructions could be tooltips that show the functionality on-screen. An example of

how this might look is shown in Figure 83.

Figure 83: Mock-up design of practical page tutorial

The tutorial should only appear once, on the first launch of the practical page. If the user

would like to repeat the tutorial, there should be a method to do this. These tooltips could

end with an embedded video of the application walkthrough discussed in 6.2.2.

Tooltips could be used to display information similar to Figure 83. Using the

sharedPreferences library would allow the application to display the tooltips on the first

time the practical page is opened, setting a boolean variable after completion. A sequence

of instructions could lead the user through some typical use cases demonstrating the

functionality.

90 9 Further Work (Gavin)

9.2 Links from the Experiment Instructions to the

practical page (Gavin)
Currently, when a user is following the instructions from the exercises embedded in the

application, to get to the practical page, they must leave the instructions, navigate the

Music Mixer information screen to reach the practical page. A more intuitive

implementation should directly navigate the user from the instruction page to the practical

page. A diagram explaining this user experience can be seen in Figure 84. This can

streamline the process of following instructions by automatically setting the required

parameters for the step of the exercise on the practical page. For example, if the

experiment requires a 440 Hz sine wave, the practical page has this pre-loaded when

launched from the instructions page.

Figure 84: Mock-up diagram of the transitions to and from the instructions and practical page

The button to launch into the practical page would primarily affect users running

experiments and reading instructions with a single phone. If multiple users each have the

application on their devices, one device could have the practical page open, and the other

has the instructions open, removing the requirement for this implementation. After the

practical page has been opened from the instructions, the implementation should be clear

that closing the practical page will take the user back to the instructions. This can either

be left to the intuition of the user, with the exit button or made evident thought a user

interface indication. Having the ability to set parameters automatically could save time for

the user but might take away from the engagement and understanding.

A method of implementing this feature would be adding a button on the instructions, as

shown in Figure 85. Returning to the instructions could be an extra option that pops up

from the floating exit button currently implemented on the practical page.

91 9 Further Work (Gavin)

Figure 85: Placeholder button to launch to the practical page from the instructions

9.3 Interactive 3D CAD Model (Gavin)
The interactive image could be further improved by replacing the 2D image with a 3D

model that would allow the user to visualize all aspects of the kits using finger gestures

such as “pinch to zoom” or “swipe to rotate”. The model could also zoom and move to a

specific element whenever a particular section is tapped.

A simple CAD model might have less detail due to the computation required for a highly

detailed model. Having the 3D model could allow users to freely explore the board in any

orientation or perspective, potentially increasing engagement in exploring the board. The

method for navigating the model should be intuitive so that users can quickly explore the

board. The impressiveness of a 3D model compared to a 2D model could encourage users

to explore the board in more depth, and spend more time discovering the features and

concepts used on the boards.

A CAD model of the boards would have to be created and implemented into the

application. A potential method of this would be the use of a Flutter package

model_viewer [33]. Tooltips could appear when certain board areas are being observed,

which could be selected to show further information, much like the current

implementation of the interactive image.

9.4 Cross-Platform Support for Web Browsers (Gavin)
Flutter has support to convert the current application to work with web browsers, and this

would be another good addition to help remove the barriers of use for the application.

If this application is supported in web browsers, this would be widely accessible,

encouraging more widespread usage. With a web application, the hardware can potentially

vary a lot more than on phones, which might cause issues when receiving and sending

information via a headphone port. This could also cause issues with requesting

permissions to access hardware resources. There are also legal accessibility requirements

that would need to be considered.

The cross-platform on web browsers could be enabled while also ensuring enough

warning about the difference in support. Most of the application should work in a similar

way to the mobile application. However, any differences should be noted on the

application. The benefit of using the implementation already developed is to leverage the

single code base and concurrent development.

9.5 Logic and Arithmetic Hardware Support (Gavin)
The Logic and Arithmetic board is included in the application through the interactive

board walkthrough and the ten exercise instructions from the lab notes. Further support

would include a separate piece of hardware that interfaces between the board and the

phone so that the application could contain a practical page, much like the Music Mixer.

92 9 Further Work (Gavin)

The application would provide tools such as a logic analyser that could be used to visualise

digital signals from the board.

The hardware required to interface with the Logic and Arithmetic board would be more

extensive than interfacing with the Music Mixer board, as it would not be suitable to

interface using the headphone port. The Logic and Arithmetic board would need updating

to include support for interfacing with an application. The signals being sent to the

application would be digital, and so an interface using USB or Bluetooth would be

appropriate. Adding this hardware might be costly but could potentially produce a patent

for a connector that works with both USB-C, lightning and USB-A connection to ensure

that any device can use this logic analyser.

A potential implementation would include a separate piece of hardware, probably a PCB,

that includes probes that can connect to the Logic and Arithmetic board. Some of the

implementation would be software to interpret these signals within the application. This

is estimated to communicate using USB or Bluetooth and could send multiple digital

streams containing data on the logic values (or potentially other information the probe can

detect). If an external tool is not required, the board could have the hardware directly

embedded so that the phone can connect directly to the board.

9.6 Slide Out Gesture for Settings Bar (Gavin)
The settings bar is currently operated using the arrow button to expand and hide the

settings bar with an animation. A potential alternative to the button-controlled behaviour

is implementing a gesture to slide out the settings bar that “follows” the motion. This could

either replace the current button or work in addition to it.

Figure 86: Practical page parameter menu, showing the collapse button (Left) expanded (Right) collapsed

Both gestures and buttons are commonly used in applications to open and close menus,

similar to the parameter menu. A user will likely try one of the options and then resort to

the other, however, to provide the most accessibility, a slide motion would improve the

number of users who naturally discover the sidebar operation. If the button implantation

were removed, the exit button for the page could replace the current button for the sliding

in and out of the sidebar. Another consideration is if the button to open or close the menu

93 9 Further Work (Gavin)

is removed, when the menu is collapsed a user might not realise that it can be expanded.

If the button was removed, a different visual indicator that the sidebar can be expanded

should be added. A slide-out gesture could either replace or be an addition to the current

button. The exit button could be re-positioned in place of the open/close button.

9.7 Pinch to Zoom for the practical page (Gavin)
The current method of changing the oscilloscope scale (and all the graphs on the

combined) is by moving the horizontal scale slider. A pinch gesture could be used in

addition to this to change this scale.

A pinch gesture might be more intuitive than a slider to zoom into the graphs. This feature

would not interfere with the current slider implementation. There is a potential for a pinch

gesture could cause issues with other gestures and motions, such as a sliding gesture to

open and close the parameter menu. However, this is unlikely because the slide gesture

uses a single finger, with a pinch requiring two. The scale of the graphs in the signal

generator mode is automatic and so cannot be manually changed. If a pinch to zoom were

implemented, it would be expected to change the zoom for all graphs. This would mean

adding an ability to scale manually and be overridden only when the signal frequency has

been updated. The current scale only affects the horizontal axis, and it is recommended

that the pinch to zoom feature aligns with this implementation.

9.8 Triggering Based on Movable Trigger Point (Gavin)
Triggering is currently present in this application, but the level at which the signals are

triggered is 0. The ability to change the trigger level could be a useful addition and is

standard in most oscilloscopes. This would allow more complicated signals to be

triggered, allowing for better analysis of constructive behaviour.

The current implementation of the trigger level at 0 assumes only a single negative edge

in a period. For many signals, this will not be the case. The only apprehension about

adding this feature is that many A-level students will not know what a trigger level is, so

this feature might not be required. The inclusion of this feature would help to generalise

the oscilloscope functionality for more uses beyond the use case with the Music Mixer

board. If this feature is implemented, the signal generator graphs would also need to

appear “triggered” in the combined view.

A potential solution would be to include this movable trigger option but have a popup that

appears the first time the user moves the slider, explaining what it does and how it works.

This would allow the functionality without requiring students to have prior understanding.

The signal generator display would also react to this trigger level, reducing the complexity

for the end-user. The triggering for the signal generator would operate under two

considerations. The first is that the user is in the combined mode (assuming the same

phone is used for input and output). The second consideration is that the user has set the

trigger point to one that is common for both the signal generator and the oscilloscope.

94 9 Further Work (Gavin)

9.9 Support for Microphone Inputs to Phone Directly

from the Music Mixer Board (Gavin)
The Music Mixer board does not currently have an output that maps to a microphone input

on the phone, nor includes a large enough impedance for a mobile phone to detect it as an

input without an in-line attenuator. The current solution is the inclusion of a headphone

splitter that can correctly map the output of the Music Mixer board to the microphone

connection. A potential solution is to add these functionalities to the output of the board

so that a no in-line attenuation or splitter needs to be added since it is already on the board.

The specific hardware requirements are also discussed in 5.4.2.

The audio output may be used for audio playback via headphones or speakers directly

from the Music Mixer board and may require a higher drive than that for a microphone.

For a microphone to be detected on phones, an impedance needs to exist between the

microphone connection and GND. The additional cost on the board may or may not

outweigh the cost of adding an in-line attenuator required for easy detection of the

microphone on a phone. Adding a specific output for a microphone would prevent using

a single phone to both output to the board and take an input. The best solution is dictated

by the number of phones typically interfacing with the board. If a single phone is the most

common case, an “all in one” port would be beneficial, but if three phones were the most

common case, having three separate ports (similar to the current layout) would be more

beneficial. Having one port on the board would mean extra adapters if multiple phones

were to connect with a signal board, whereas if there were various ports on the board,

more adapters would be needed for a single phone to interface with the board.

Figure 87: Use case of the board redesign with TRRS connection to three phones with splitters

One option is to replace the inputs and outputs on the board to be a single 4-Segment Plug

[34] into the board. In doing so, only a single connection cable would be required from

the phone to the board (a simple TRRS cable). This assumes that the microphone output

conforms to the requirements stated in 5.4.2 for microphone detection. There are two

benefits from this, a reduced cost in ports placed on the board, and a reduced cost in the

number of adapters required to interface to a single phone. The downside would be that

95 9 Further Work (Gavin)

splitters would no longer be as quickly connected to the board. However, it could still be

done with the recommended splitters and simultaneously used with multiple phones. A

mock-up is shown in Figure 87. The real benefit of this solution is shown in Figure 88,

where a single phone interfaces with the board.

Figure 88: Use case of the board redesign with TRRS connection to a single phone that is used as both oscilloscope

and signal generator

Another option is to add an output to the board that maps the output to the microphone

section to include enough impedance for microphone detection. This port could be used

to connect to a device for automatic microphone detection. The existing output port would

remain unchanged and could be used to output to headphones and speakers as before.

 97

10 References

[1] Flutter, “Flutter Plugins: Shared Preferences,” Flutter, [Online]. Available:

https://github.com/flutter/plugins/tree/master/packages/shared_preferences. [Accessed 2020].

[2] Flutter, “Flutter Plugins: URL Launcher,” Flutter, [Online]. Available:

https://github.com/flutter/plugins/tree/master/packages/url_launcher. [Accessed 2020].

[3] Once10301, “Flutter Plugins: Permission,” [Online]. Available:

https://github.com/once10301/permission. [Accessed 2020].

[4] FlutterCommunity, “Flutter Plugins: Flutter Launcher Icons,” FlutterCommunity, [Online].

Available: https://github.com/fluttercommunity/flutter_launcher_icons. [Accessed 2020].

[5] anarchuser, “Flutter Plugins: Mic Stream,” [Online]. Available:

https://github.com/anarchuser/mic_stream. [Accessed 2020].

[6] UKESF, “About,” UKESF, [Online]. Available: https://www.ukesf.org/about/. [Accessed 2020].

[7] UKESF, “UKESF Infographic,” UKESF, [Online]. Available: https://www.ukesf.org/wp-

content/uploads/2018/03/17-UKESF011-UKESF-Infographics-Update-A4-1.pdf. [Accessed 2020].

[8] UKESF, “Electronics Everywhere,” UKESF, [Online]. Available:

https://www.ukesf.org/employers/electronics-everwhere/. [Accessed 2020].

[9] University of Southampton ECS, “Electronic Engineering Kits,” University of Southampton,

[Online]. Available: https://www.ecs.soton.ac.uk/outreach/kits. [Accessed 2020].

[10] University of Southampton ECS, “A-Level Physics Music Mixer Kit,” University of Southampton,

[Online]. Available: https://www.ecs.soton.ac.uk/outreach/kits/physics-music-mixer-kit. [Accessed

2020].

[11] University of Southampton ECS, “A-Level Computer Science Logic and Arithmetic Kit,” University

of Southampton, [Online]. Available: https://www.ecs.soton.ac.uk/outreach/kits/computer-science-

logic-and-arithmetic-kit. [Accessed 2020].

[12] University of Southampton ECS, “A-Level Computer Science: Logic and Arithmetic Kit Training

Handbook,” [Online]. Available:

https://www.ecs.soton.ac.uk/sites/www.ecs.soton.ac.uk/files/alevel-cs-training-lab-notes_0.pdf.

[Accessed 2020].

[13] R. Silva, “PCM Audio in Stereo and Home Theatre,” Lifewire, 25 11 2019. [Online]. Available:

https://www.lifewire.com/what-is-pcm-1846928. [Accessed 2020].

[14] C. E. Shannon, “Communication in the Presence of Noise,” Proceedings of the IRE, vol. 37, no. 1,

pp. 10-21, 1949.

[15] Elprocus, “Pulse Code Modulation and Demodulation,” Elprocus, [Online]. Available:

https://www.elprocus.com/pulse-code-modulation-and-demodulation/. [Accessed 2020].

[16] Android, “AudioTrack,” Android, [Online]. Available:

https://developer.android.com/reference/android/media/AudioTrack. [Accessed 2020].

[17] Android, “AudioRecord,” Android, [Online]. Available:

https://developer.android.com/reference/android/media/AudioRecord. [Accessed 2020].

98 10 References

[18] Apple, “Audio Unit Hosting Fundamentals,” [Online]. Available:

https://developer.apple.com/library/archive/documentation/MusicAudio/Conceptual/AudioUnitHost

ingGuide_iOS/AudioUnitHostingFundamentals/AudioUnitHostingFundamentals.html.

[19] Statcounter, “Statcounter,” [Online]. Available: https://gs.statcounter.com/os-market-

share/mobile/united-kingdom. [Accessed 2020].

[20] Google, “Explore search interest for Xamarin, React Native, Flutter, Phonegap, Ionic by time, location

and popularity on Google Trends,” Google, [Online]. Available: https://bit.ly/3siO8vk. [Accessed

2020].

[21] Keuwlsoft, “Function Generator,” Keuwlsoft, [Online]. Available:

https://play.google.com/store/apps/details?id=com.keuwl.functiongenerator&hl=en&gl=US.

[Accessed 2020].

[22] P. Reinholdtsen, Vaclav and W. Schweizer, “AUDio MEasurement System,” SourceForge, [Online].

Available: https://sourceforge.net/projects/audmes/. [Accessed 2020].

[23] G. E. Krasner and S. T. Pope, “A Description of the Model-View-Controller User Interface Paradigm

in the Smalltalk-80 System,” ParcPlace Systems, California, 1988.

[24] Atlassian, “What is version control,” Atlassian, [Online]. Available:

https://www.atlassian.com/git/tutorials/what-is-version-control. [Accessed 2020].

[25] M. Gallagher, “An iOS tone generator (an introduction to AudioUnits),” 20 October 2010. [Online].

Available: https://www.cocoawithlove.com/2010/10/ios-tone-generator-introduction-to.html.

[26] Android, “Android Developers - AudioRecord,” [Online]. Available:

https://developer.android.com/reference/android/media/AudioRecord. [Accessed 2020].

[27] UKESF, “UKESF Homepage,” UKESF, [Online]. Available: https://www.ukesf.org/. [Accessed

2020].

[28] U. o. Southampton, “Training Handbook,” University of Southampton, [Online]. Available:

https://www.ecs.soton.ac.uk/sites/www.ecs.soton.ac.uk/files/Training%20Handbook_0.pdf.

[Accessed 2020].

[29] U. o. Southampton, “Logic and Arithmetic Electronic Engineering Kit,” University of Southampton,

[Online]. Available:

https://www.ecs.soton.ac.uk/sites/www.ecs.soton.ac.uk/files/logic_problems.pdf. [Accessed 2020].

[30] Android, “3.5 mm Headset Jack: Device Specification,” Android, [Online]. Available:

https://source.android.com/devices/accessories/headset/jack-headset-spec. [Accessed 2020].

[31] GDP-18, “Electronics Everywhere Application Walkthrough,” [Online]. Available:

https://www.youtube.com/watch?v=K6jnNEfbDwE&feature=youtu.be.

[32] Códice Software S.L., “gmaster - Git GUI,” Códice Software S.L., [Online]. Available:

https://gmaster.io/. [Accessed 2020].

[33] ar.to, “model_viewer,” [Online]. Available: https://pub.dev/packages/model_viewer.

[34] RS, “RS PRO 3.5 mm PCB Mount Composite Video Jack Socket, 4Pole,” RS Electronics, [Online].

Available: https://uk.rs-online.com/web/p/jack-plugs-sockets/8051665/. [Accessed 2020].

 99

11 Appendix
A ORIGINAL PROJECT BRIEF .. 100

B SPECIFICATION .. 101

C GITHUB BRANCH HISTORY .. 104

D RISK ASSESSMENT .. 106

E CLIENT FEEDBACK ... 108

E.I. CLIENT RESPONSE .. 108
E.II. INITIAL E-MAIL .. 109

F EDITED LABORATORY NOTES ... 110

G STOCK PHOTO HIGHLIGHTS ... 116

H APPLICATION INSTRUCTIONS .. 118

I HANDOVER DOCUMENT ... 127

I.I. INTRODUCTION AND PURPOSE OF DOCUMENT ... 127
I.II. LIST OF FEATURES ... 128
I.III. KNOWN BUGS .. 131
I.IV. SOFTWARE INFORMATION AND SUGGESTED WORK ... 133
I.V. HARDWARE INFORMATION AND SUGGESTED WORK .. 149
I.VI. SUGGESTED CHANGES FOR SUPPORTING CONTENT .. 154
I.VII. ADDITIONAL INFORMATION ... 155
I.VIII. PROJECT STRUCTURE ... 157

100 11 Appendix

A Original Project Brief

101 11 Appendix

B Specification

102 11 Appendix

103 11 Appendix

104 11 Appendix

C GitHub Branch History

105 11 Appendix

106 11 Appendix

D Risk Assessment

107 11 Appendix

108 11 Appendix

E Client Feedback

E.i. Client Response

109 11 Appendix

E.ii. Initial E-mail

110 11 Appendix

F Edited Laboratory Notes

111 11 Appendix

112 11 Appendix

113 11 Appendix

114 11 Appendix

115 11 Appendix

116 11 Appendix

G Stock Photo Highlights

117 11 Appendix

118 11 Appendix

H Application Instructions

119 11 Appendix

120 11 Appendix

121 11 Appendix

122 11 Appendix

123 11 Appendix

124 11 Appendix

125 11 Appendix

126 11 Appendix

127 11 Appendix

I Handover Document

I.i. Introduction and Purpose of Document

128 11 Appendix

I.ii. List of Features

129 11 Appendix

130 11 Appendix

131 11 Appendix

I.iii. Known Bugs

132 11 Appendix

133 11 Appendix

I.iv. Software Information and Suggested Work

134 11 Appendix

135 11 Appendix

A

136 11 Appendix

137 11 Appendix

138 11 Appendix

139 11 Appendix

140 11 Appendix

141 11 Appendix

142 11 Appendix

143 11 Appendix

144 11 Appendix

145 11 Appendix

146 11 Appendix

147 11 Appendix

148 11 Appendix

149 11 Appendix

I.v. Hardware Information and Suggested Work

150 11 Appendix

151 11 Appendix

152 11 Appendix

153 11 Appendix

154 11 Appendix

I.vi. Suggested Changes for Supporting Content

155 11 Appendix

I.vii. Additional Information

156 11 Appendix

157 11 Appendix

I.viii. Project Structure

158 11 Appendix

	Abstract (Adel)
	Table of Contents
	Acknowledgements
	Statement of Originality
	Table of Figures
	Abbreviations and Definitions
	1 Introduction (Foivos)
	2 Background Research
	2.1 Kits (Gavin)
	2.1.1 Music Mixer (Gavin)
	2.1.1.1 Existing Resources (Gavin)
	2.1.1.2 Music Mixer Section (Gavin)
	2.1.1.3 Capacitor-Discharge Section (Gavin)
	2.1.1.4 Plank’s Constant Section (Gavin)

	2.1.2 Logic and Arithmetic (Gavin)
	2.1.2.1 Existing Resources (Gavin)
	2.1.2.2 Logic Section (Gavin)
	2.1.2.3 Arithmetic Section (Gavin)

	2.2 Linear Pulse Code Modulation (LPCM) (Foivos)
	2.2.1 Sampling Rate and Resolution (Foivos)
	2.2.2 PCM Conversion Process (Foivos)
	2.2.3 Mobile Devices (Foivos)
	2.2.3.1 Android (Eamonn)
	2.2.3.2 iOS (Foivos)

	2.3 Tools (Adel)
	2.3.1 Native Application Development (Adel)
	2.3.2 Cross-Platform Development (Adel)
	2.3.2.1 React Native (Adel)
	2.3.2.2 Flutter (Adel)

	2.4 Other Applications (Leonardo)
	2.4.1 Dual-Channel Function Generator (Leonardo)
	2.4.2 AUDio MEasurement System (Leonardo)

	2.5 Standards of Design (Eamonn)
	2.5.1 Model View Controller (Eamonn)
	2.5.1.1 Model (Eamonn)
	2.5.1.2 View (Eamonn)
	2.5.1.3 Controller (Eamonn)
	2.5.1.4 MVC Concerning this Project (Eamonn)

	2.5.2 Version Control System (Eamonn)

	3 Specification (Eamonn)
	3.1.1 Core Specification (Eamonn)
	3.1.2 Stretch Goals (Eamonn)

	4 Design and Implementation
	4.1 Initial Design (Eamonn)
	4.1.1 Model View Controller (Eamonn)

	4.2 Hardware Implementation (Eamonn)
	4.2.1 Signal Generator (Eamonn)
	4.2.1.1 Android (Eamonn)
	4.2.1.2 iOS (Foivos)

	4.2.2 Oscilloscope (Foivos)
	4.2.2.1 Android (Gavin)
	4.2.2.2 iOS (Foivos)

	4.3 Home Screen (Leonardo)
	4.3.1 Page Components (Leonardo)
	4.3.2 Initial Design and Implementation (Leonardo)
	4.3.3 Design Changes and Considerations (Leonardo)
	4.3.4 Final Design and Implementation (Leonardo)
	4.3.4.1 Top Navigation Bar (Leonardo)
	4.3.4.2 UKESF Themed Widgets (Leonardo)
	4.3.4.3 Colour Scheme and Font (Leonardo)

	4.4 About Page (Leonardo)
	4.4.1 Page Components (Leonardo)
	4.4.2 Design Decisions (Leonardo)
	4.4.3 Implementation (Leonardo)
	4.4.4 Music Mixer Screen (Leonardo)
	4.4.5 Logic and Arithmetic Screen (Leonardo)

	4.5 Interactive Image Page (Adel)
	4.5.1 Page Content (Adel)
	4.5.2 Design Changes (Adel)
	4.5.3 Final Design and Implementation (Adel)

	4.6 Exercises Pages (Leonardo)
	4.6.1 Page Components (Leonardo)
	4.6.2 Initial Design and Implementation (Leonardo)
	4.6.3 Design Changes and Considerations (Leonardo)
	4.6.4 Final Design and Implementation (Leonardo)
	4.6.4.1 Lab Selection Page (Leonardo)
	4.6.4.2 Lab Information Page (Leonardo)

	4.6.5 Logic and Arithmetic Screen (Leonardo)

	4.7 Settings Page (Leonardo)
	4.7.1 Page Components and Design Considerations (Leonardo)
	4.7.2 Final Design and Implementation (Leonardo)

	4.8 Practical Page (Gavin)
	4.8.1 Design Considerations (Gavin)
	4.8.2 Page Layout and Overview Design (Gavin)
	4.8.3 Sidebar and Parameter Menu (Gavin)
	4.8.3.1 Signal Generator Parameter Menu (Gavin)
	4.8.3.2 Oscilloscope Parameter Menu (Gavin)
	4.8.3.3 Combined Parameter Menu (Gavin)

	4.8.4 Graphing (Gavin)
	4.8.4.1 Graph Signal Labels (Gavin)
	4.8.4.2 Graph Style Configuration (Gavin)
	4.8.4.3 Graph Backend (Eamonn)

	4.8.5 Save/Load Slots (Foivos)
	4.8.5.1 Saving to a Slot (Foivos)
	4.8.5.2 Deleting a Slot (Foivos)
	4.8.5.3 Information Popup (Foivos)
	4.8.5.4 Default Configuration (Foivos)

	4.9 Application Navigation (Leonardo)
	4.10 Integration (Eamonn)

	5 Testing (Eamonn)
	5.1 Methodology (Eamonn)
	5.2 Android Results (Eamonn)
	5.2.1 Samsung S8 Using an Auxiliary Cable (Eamonn)
	5.2.2 OnePlus One Using an Auxiliary Cable (Eamonn)
	5.2.3 Samsung S8 Using Other Connections (Eamonn)

	5.3 iOS Results (Eamonn)
	5.4 Other Notable Results (Eamonn)
	5.4.1 Signal Generation (Eamonn)
	5.4.2 Microphone Detection and Processing (Eamonn)
	5.4.3 Oscilloscope (Eamonn)

	5.5 A-level Teachers Feedback (Eamonn)
	5.5.1 First Survey (Eamonn)
	5.5.2 Second Survey (Eamonn)
	5.5.3 Third Survey (Eamonn)

	6 Final Outputs (Gavin)
	6.1 Application (Eamonn)
	6.2 Handover Resources (Gavin)
	6.2.1 Handover Document (Gavin)
	6.2.2 Instructional Video (Gavin)
	6.2.3 Written Instructions (Gavin)
	6.2.4 Music Mixer Laboratory Experiment Instructions (Gavin)
	6.2.5 Stock Images (Gavin)

	6.3 Surveys (Eamonn)
	6.4 Testing Documents (Eamonn)

	7 Project Management (Eamonn)
	7.1 Division of Responsibilities and Project Planning (Eamonn)
	7.1.1 Initial Plan (Eamonn)
	7.1.2 Initial Division of Roles (Eamonn)
	7.1.3 Actual Execution (Eamonn)
	7.1.4 Actual Division of Roles (Eamonn)

	7.2 Ethical Approval and Planning of Questionnaires (Eamonn)
	7.2.1 Initial Rationale and Planning (Eamonn)
	7.2.2 Evaluation of Usefulness (Eamonn)

	7.3 Planning and Tools (Eamonn)
	7.3.1 Version Control System (Eamonn)

	7.4 Risk Management (Eamonn)
	7.4.1 Initial Risk Assessment (Eamonn)
	7.4.2 Actual Risks Mitigated (Eamonn)

	7.5 Strengths and Weaknesses Matrix (Eamonn)
	7.5.1 Initial Strengths and Weaknesses (Eamonn)
	7.5.2 Strengths and Weaknesses After Project (Eamonn)

	7.6 Achievements and Results (Eamonn)

	8 Conclusion
	8.1 Specification (Eamonn)
	8.2 Concluding Discussion (Foivos)

	9 Further Work (Gavin)
	9.1 practical page Tutorial (Gavin)
	9.2 Links from the Experiment Instructions to the practical page (Gavin)
	9.3 Interactive 3D CAD Model (Gavin)
	9.4 Cross-Platform Support for Web Browsers (Gavin)
	9.5 Logic and Arithmetic Hardware Support (Gavin)
	9.6 Slide Out Gesture for Settings Bar (Gavin)
	9.7 Pinch to Zoom for the practical page (Gavin)
	9.8 Triggering Based on Movable Trigger Point (Gavin)
	9.9 Support for Microphone Inputs to Phone Directly from the Music Mixer Board (Gavin)

	10 References
	11 Appendix
	A Original Project Brief
	B Specification
	C GitHub Branch History
	D Risk Assessment
	E Client Feedback
	E.i. Client Response
	E.ii. Initial E-mail

	F Edited Laboratory Notes
	G Stock Photo Highlights
	H Application Instructions
	I Handover Document
	I.i. Introduction and Purpose of Document
	I.ii. List of Features
	I.iii. Known Bugs
	I.iv. Software Information and Suggested Work
	I.v. Hardware Information and Suggested Work
	I.vi. Suggested Changes for Supporting Content
	I.vii. Additional Information
	I.viii. Project Structure

